TAILIEUCHUNG - Báo cáo toán học: "A note on positive operators "

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Một lưu ý các nhà khai thác tích cực. | J. OPERATOR THEORY 5 1981 73 76 Copyright by ĨNCREST 1981 A NOTE ON POSITIVE OPERATORS CHE-KAO FONG and SZE-KAI TSUI In the present note we give a generalization of the elementary fact that a complex number z is a nonnegative real number if z Re z . Let T be a bounded linear operator on a Hilbert space. We denote T T j2 by Re T and the positive square root of T T by T . The generalization is the following. Theorem 1. If T SỈ Re T then T is positive. The above theorem gives a characterization of positive operators. In what follows we shall prove a stronger result from which Theorem 1 can be derived immediately. Theorem 2. Let T VP where T V p are bounded linear operators on a Hilbert space with p 0 and. V being power bounded . K Ị X k for a fixed k and n 1 2. . If p Re T then T p. Note that Theorem 1 follows from Theorem 2 by considering the polar decomposition of T. An immediate consequence of Theorem 2 is Corollary 3. If V is a power bounded operator and Re F I then V I. We remark that the hypothesis RelV I in the above Corollary cannot be replaced by a weaker condition such as jRe Jz I. For example let Vbe a 2x2 0 2 matrix of the form I I then Re F Z and V2 0. Now we proceed to prove Theorem 2. Firstly we show the following lemma. Lemma 4. Suppose that p V are operators on a Hilbert space đi and p is positive. If p Re FP then p -c VPV . Furthermore if p sj Re FP and p VPV then VP p. Proof. For each vector X in we have Px x - Re LP x x Re VPx x SỈ 1 . . VPx x Px X 1 2 PL X P x 2 74 CHE-KAO FONG and SZE-KAI TSUI by applying Schwarz s inequality to the positive semi-definite form x y -H- Px ỳ x F F in obtaining the last inequality in 1 . Hence Px x VPV X x for all X in jf that is p íC VPV . In addition to P Re VP if p VPV is assumed then 1 yields Px x Re FPx x VPx x VPx x for all X in yf and hence p VP. . Proof of Theorem 2. Since VPV - p 0 by Lemma 4 it follows that V VPV P V 0 that is F2P JZ 2 VPV . Repeating the process n times we have F ip jz i VnP y y.

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.