TAILIEUCHUNG - Bài giảng Toán kỹ thuật: Chương 3 - Toán tử Laplace (ĐH Bách Khoa TP.HCM)

Bài giảng Toán kỹ thuật: Chương 3 - Toán tử Laplace trình bày các nội dung về phép biến đổi Lapalace, phép biến đổi Lapalace ngược, ứng dụng biến đổi Lapace vào phương trình vi phân, ứng dụng biến đổi Lapace vào giải tích Mạch điện. | Phép biên đôi Lapalace Phép biên đôi Lapalace ngược Ứng dụng biên đôi Lapace vào PT vi phân Ứng dụng biên đôi Lapace vào Giải tích Mạch điện Bài giảng Toán Kỹ Thuật 2012 1 Định nghĩa f t là hàm có thể phức của biến số thực t t 0 sao cho tích phân hội tụ ít nhất với một số phức 5 a jb Ảnh của hàm f t qua biến đổi Laplace là hàm F s được định nghĩa to F 5 L f t I f t e s dt 0 F s ảnh Laplace f t gốc _ Ký hiệu khác F 5 f t hay f t F 5 Lưu ý trong phạm vi giáo trình ta chỉ xét các giá trị 5 trong khoang tích phân là hội tụ ínl a cl 1. ha t h Tập hợp các hàm f t của biến số thực t sao cho tích phân hội tụ ít nhất với một số phức s gọi là lớp hàm gốc. Trong đó tập hợp các giá trị của s sao cho tích phân tồn tại thì được gọi là miền hội tụ hay miền qui tụ . Ta có thê chứng minh được lớp các hàm gốc phải thỏa mãn các tính chất sau. f t 0 với mọi t 0. Khi t 0 hàm f t liên tục cùng với các đạo hàm cấp đủ lớn trên toàn trục t trừ một số hữu hạn điểm gián đoạn loại một. Khi Wro hàm f t có cấp tăng bị chặn tức là tồn tại hằng số s 0 và M 0 sao cho f t Mest Vt 0 Khi đó so inf s được gọi là chỉ số tăng của hàm f. Tức là hàm f t không được tăng nhanh hơn hàm est để đảm bảo tích phân Laplace hội tụ . Lưu ý trong phạm vi giáo trình ta chỉ xét các giá trị s trong khoảng tích phân là hội .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.