TAILIEUCHUNG - Autonomous Underwater Vehicles Part 2

Tham khảo tài liệu 'autonomous underwater vehicles part 2', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Development of a Vectored Water-Jet-Based Spherical Underwater Vehicle 9 So a general transform matrix can be obtained pPb bp pPp C 4 where pPb is the position vector of propeller-fixed coordinate expressed in vehicle-fixed coordinate p p1 p2 p3 T is the transform matrix from propeller-fixed coordinate to vehicle-fixed coordinate p Pp is the position vector in propeller-fixed coordinate and the C is a constant vector. Now let us take a look at three motions surge heave and yaw. The definition of these three motions can be found in Fossen 1995 . Before that we define two angles which will be used for orientation of propellers. gives the definition of a and ft. gives a demonstration of surge heave and yaw. a Rotation in X-Y Plane b Rotation in X-Z Plane Fig. 10. Orientation of Propellers a Surge b Heave c Yaw Fig. 11. Propulsion Forces for Surge Heave and Yaw The first case is surge. In this case two of the water-jet propellers will work together and the other one could be used for brake. So from a two water-jet propellers in the left will be used for propulsion and if we want to stop the vehicle from moving the third propeller can act as a braking propeller. From Equation 4 the resultant force for surge can be expressed in vehicle-fixed coordinate as pFxb bJ1 i p Fip e1Q 0 I pFyb 0 I pFzb 0 5 10 Autonomous Underwater Vehicles where ei 1 0 0 T. Then for the heave case all the three water-jet propellers will work and the side servo motor will rotate to an angle that Ỉ n 2. Therefore in this case the resultant force for heave can be expressed in vehicle-fixed coordinate as pFxb 0 I pFyb 0 3 3 f pFp esC 0 i 1 6 where es 0 0 1 T. The third case is yaw which is rotating on z-axis. By denoting in propeller-fixed coordinates a should have the same orientation clockwise or counterclockwise that means Xj 0 or a 0. So in yaw rotation moment will take effect. We can write the equation for yaw in vehicle-fixed coordinate as r T 3 pFxb pi f pFp eiC 0 pFyb p f

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.