TAILIEUCHUNG - Bất đẳng thức cô si trong các kì thi tuyển sinh đại học và cao đẳng - Huỳnh Kim Linh

Tài liệu "Bất đẳng thức cô si trong các kì thi tuyển sinh đại học và cao đẳng" trình bày các kiến thức cơ bản và các dạng bài tập minh họa có lời giải hướng dẫn chi tiết về bất đẳng thức cô si trong các kì thi tuyển sinh đại học và cao đẳng. Mời các bạn tham khảo. | BẤT ĐẲNG THỨC CÔ SI TRONG CÁC KÌ THI TUYỂN SINH ĐẠI HỌC VÀ CAO ĐẲNG Lời nói đầu : Thực hiện nhiệm vụ năm học 2008 – 2009, Trường THPT Chuyên Lê Quý Đôn Khánh Hòa khuyến khích các giáo viên dạy môn chuyên, làm chuyên đề để xây dựng tài nguyên của tổ chuyên môn. Chính vì vậy tôi đã thực hiện và làm chuyên đề về : BẤT ĐẲNG THỨC CÔ SI TRONG CÁC KÌ THI TUYỂN SINH ĐẠI HỌC VÀ CAO ĐẲNG Trong các kì thi tuyển sinh đại học và cao đẳng, có một hay hai câu khó để phân loại thí sinh và thường có một câu về bất đẳng thức. 1) Định lý (Bất đẳng thức Cô si) : Cho n số thực không âm : a1 ; a2 ; .; an Ta có : √ a1 + a2 + . + an ≥ n a1 a2 .an n Đẳng thức xảy ra khi và chỉ khi a1 = a2 = · · · = an 2) Một số bất đẳng thức liên quan đến bất đẳng thức Cô si : ) Các Bất đẳng thức dạng phân thức Với x, y > 0. Ta có : 1 1 4 + ≥ x y x+y (1) 1 4 ≥ xy (x + y)2 (2) Đẳng thức xảy ra khi và chỉ khi x = y. Với x, y, z > 0. Ta có : 1 1 1 9 + + ≥ x y z x+y+z (3) Đẳng thức xảy ra khi và chỉ khi x = y = z. ) Các bất đẳng thức dạng đa thức : x2 + y 2 + z 2 ≥ xy + yz + zx (4) 3 x2 + y 2 + z 2 ≥ (x + y + z)2 (5) (x + y + z)2 ≥ 3 (xy + yz + zx) (6) Đẳng thức xảy ra khi và chỉ khi x = y = z. 3) MỘT SỐ BÀI TOÁN THI ĐẠI HỌC : Bài toán 1 : Đề thi tuyển sinh Đại học khối A năm 2005 Cho x, y, z là các số thực dương thỏa mãn : 1 1 1 + + =4 x y z Huỳnh Kim Linh Trang thứ 1 trong 12 trang BẤT ĐẲNG THỨC CÔ SI TRONG CÁC KÌ THI TUYỂN SINH ĐẠI HỌC VÀ CAO ĐẲNG Chứng minh rằng : 1 1 1 + + ≤ 1. 2x + y + z x + 2y + z x + y + 2z Lời giải : Cách 1 : Áp dụng bất đẳng thức : 1 1 4 + ≥ x y x+y Với x, y > 0, ta được : 8=2 1 1 1 + + x y z = 1 1 1 1 1 1 1 1 1 + + + + + ≥4 + + x y y z z x x+y y+z z+x (1) Tương tự 2 1 x+y + 1 y+z 1 2x+y+z ≥4 1 1 1 1 = x+y + x+z x+y z+x 1 1 + x+y+2z (2) x+2y+z + + + 1 y+z 1 y+z + 1 z+x Từ (1) và (2) suy ra 8≥8 1 1 1 + + 2x + y + z x + 2y + z x + y + 2z ⇔ 1 1 1 + + ≤ 1. 2x +

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.