TAILIEUCHUNG - Chapter 5: Inverse functinons – Section 5.8: Indeterminate forms and l’hospital’s rule

Mời các bạn tham khảo bài giảng Chapter 5: Inverse functinons – Section : Indeterminate forms and l’hospital’s rule sau đây. Bài giảng dành cho đối tượng sinh viên ngành Công nghệ thông tin. Tham khảo nội dung bài giảng để nắm bắt nội dung chi tiết. | SECTION INDETERMINATE FORMS AND L’HOSPITAL’S RULE P INDETERMINATE FORMS Suppose we are trying to analyze the behavior of the function Although F is not defined when x = 1, we need to know how F behaves near 1. In particular, we would like to know the value of the limit P INDETERMINATE FORMS In computing this limit, we can’t apply Law 5 of limits (Section ) because the limit of the denominator is 0. In fact, although the limit in Expression 1 exists, its value is not obvious because both numerator and denominator approach 0 and is not defined. P INDETERMINATE FORM —TYPE 0/0 In general, if we have a limit of the form where both f(x) → 0 and g(x) → 0 as x → a, then this limit may or may not exist. It is called an indeterminate form of type . We met some limits of this type in Chapter 1. P INDETERMINATE FORMS For rational functions, we can cancel common factors: We used a geometric argument to show that: P INDETERMINATE FORMS However, these .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.