TAILIEUCHUNG - Calculus and its applications: 2.2

"Calculus and its applications: " - Using Second derivatives to find maximum and minimum values and sketch graphs have objective: find the relative extrema of a function using the second-derivative test, sketch the graph of a continuous function. | 2012 Pearson Education, Inc. All rights reserved Slide Using Second Derivatives to Find Maximum and Minimum Values and Sketch Graphs OBJECTIVE Find the relative extrema of a function using the Second-Derivative Test. Sketch the graph of a continuous function. 2012 Pearson Education, Inc. All rights reserved Slide DEFINITION: Suppose that f is a function whose derivative f exists at every point in an open interval I. Then f is concave up on I if f is concave down on I f is increasing over I. if f is decreasing over I. Using Second Derivatives to Find Maximum and Minimum Values and Sketch Graphs 2012 Pearson Education, Inc. All rights reserved Slide THEOREM 4: A Test for Concavity 1. If f (x) > 0 on an interval I, then the graph of f is concave up. ( f is increasing, so f is turning up on I.) 2. If f (x) Slide THEOREM 5: The Second Derivative Test for Relative Extrema Suppose that f is differentiable for every x in an open interval (a, b) and that there is a critical value c in (a, b) for which f (c) = 0. Then: 1. f (c) is a relative minimum if f (c) > 0. 2. f (c) is a relative maximum if f (c) p. 216, the concluding sentence of Theorem 5 says “f(x)” instead of f(c). 2012 Pearson Education, Inc. All rights reserved Slide Example 1: Graph the function f given by and find the relative extrema. 1st find f (x) and f (x). Using Second Derivatives to Find Maximum and Minimum Values and Sketch Graphs 2012 Pearson Education, Inc. All rights reserved Slide Example 1

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.