TAILIEUCHUNG - Báo cáo hóa học: " Research Article Optimizing Training Set Construction for Video Semantic Classification"

Tham khảo luận văn - đề án 'báo cáo hóa học: " research article optimizing training set construction for video semantic classification"', luận văn - báo cáo phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Hindawi Publishing Corporation EURASIP Journal on Advances in Signal Processing Volume 2008 Article ID 693731 10 pages doi 2008 693731 Research Article Optimizing Training Set Construction for Video Semantic Classification Jinhui Tang 1 Xian-Sheng Hua 2 Yan Song 1 Tao Mei 2 and Xiuqing Wu1 1 Department of Electronic Engineering and Information Science University of Science and Technology of China Hefei 230027 China 2 Microsoft Research Asia Beijing 100080 China Correspondence should be addressed to Jinhui Tang jhtang@ Received 9 March 2007 Revised 14 September 2007 Accepted 12 November 2007 Recommended by Mark Kahrs We exploit the criteria to optimize training set construction for the large-scale video semantic classification. Due to the large gap between low-level features and higher-level semantics as well as the high diversity of video data it is difficult to represent the prototypes of semantic concepts by a training set of limited size. In video semantic classification most of the learning-based approaches require a large training set to achieve good generalization capacity in which large amounts of labor-intensive manual labeling are ineluctable. However it is observed that the generalization capacity of a classifier highly depends on the geometrical distribution of the training data rather than the size. We argue that a training set which includes most temporal and spatial distribution information of the whole data will achieve a good performance even if the size of training set is limited. In order to capture the geometrical distribution characteristics of a given video collection we propose four metrics for constructing selecting an optimal training set including salience temporal dispersiveness spatial dispersiveness and diversity. Furthermore based on these metrics we propose a set of optimization rules to capture the most distribution information of the whole data using a training set with a given size. Experimental results .

TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
10    187    3    08-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.