TAILIEUCHUNG - Hệ thống điều khiển mờ - Thiết kế và phân tích P6

OPTIMAL FUZZY CONTROL In control design, it is often of interest to synthesize a controller to satisfy, in an optimal fashion, certain performance criteria and constraints in addition to stability. The subject of optimal control addresses this aspect of control system design. | Fuzzy Control Systems Design and Analysis A Linear Matrix Inequality Approach Kazuo Tanaka Hua O. Wang Copyright 2001 John Wiley Sons Inc. CHAPTERS ISBNs 0-471-32324-1 Hardback 0-471-22459-6 Electronic OPTIMAL FUZZY CONTROL In control design it is often of interest to synthesize a controller to satisfy in an optimal fashion certain performance criteria and constraints in addition to stability. The subject of optimal control addresses this aspect of control system design. For linear systems the problem of designing optimal controllers reduces to solving algebraic Riccati equations AREs which are usually easy to solve and detailed discussion of their solutions can be found in many textbooks 1 . However for a general nonlinear system the optimization problem reduces to the so-called Hamilton-Jacobi HJ equations which are nonlinear partial differential equations PDEs 2 . Different from their counterparts for linear systems HJ equations are usually hard to solve both numerically and analytically. Results have been given on the relationship between solution of the HJ equation and the invariant manifold for the Hamiltonian vector field. Progress has also been made on the numerical computation of the approximated solution of HJ equations 3 . But few results so far can provide an effective way of designing optimal controllers for general nonlinear systems. In this chapter we propose an alternative approach to nonlinear optimal control based on fuzzy logic. The optimal fuzzy control methodology presented in this chapter is based on a quadratic performance function 4-7 utilizing the relaxed stability conditions. The optimal fuzzy controller is designed by solving a minimization problem that minimizes the upper bound of a given quadratic performance function. In a strict sense this approach is a suboptimal design. One of the advantages of this methodology is that the design conditions are represented in terms of LMIs. Refer to 8 for a more thorough treatment of optimal fuzzy .

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
11    178    2    26-01-2025
28    168    1    26-01-2025
65    149    1    26-01-2025
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.