TAILIEUCHUNG - Tính giải được đối với phương trình vi tích phân phân thứ nửa tuyến tính dạng Lattice

Trong bài báo này, tác giả nghiên cứu dáng điệu tiệm cận của toán tử giải thức sinh ra bởi một toán tử dạng lattice và nghiên cứu sự tồn tại cũng như tính duy nhất nghiệm của phương trình vi tích phân phân thứ dạng lattice bằng cách sử dụng nguyên lí điểm bất động Banach. | Tính giải được đối với phương trình vi tích phân phân thứ nửa tuyến tính dạng Lattice P-ISSN 1859-3585 E-ISSN 2615-9619 SCIENCE - TECHNOLOGY TÍNH GIẢI ĐƯỢC ĐỐI VỚI PHƯƠNG TRÌNH VI TÍCH PHÂN PHÂN THỨ NỬA TUYẾN TÍNH DẠNG LATTICE SOLVABILITY FOR FRACTIONAL SEMILINEAR LATTICE INTEGRO-DIFFERENTIAL EQUATION Nguyễn Như Quân nội dung chi tiết chúng tôi giới thiệu đến đọc giả công TÓM TẮT trình của Hale [3]. Trong bài báo này, tác giả nghiên cứu dáng điệu tiệm cận của toán tử giải Để viết lại hệ phương trình (1) ở dạng tổng quát trong thức sinh ra bởi một toán tử dạng lattice và nghiên cứu sự tồn tại cũng như tính duy nhất nghiệm của phương trình vi tích phân phân thứ dạng lattice bằng cách không gian 2 . Với mỗi dãy u (ui )i , trong 2 , ta đặt: sử dụng nguyên lí điểm bất động Banach. (Bu)i ui 1 ui ; (B*ui ) ui 1 ui Từ khóa: Sự tồn tại nghiệm, toán tử lattice, nguyên lí điểm bất động Banach. và ABSTRACT (A0u)i ui 1 2ui ui 1; (2) In this paper, author studies the behavior of α-resolvent operator generated by (Au)i ui 1 2ui ui 1 μui , a lattice operator and the existence and unique of solution for fractional semilinear lattice integro-differential equation by using Banach fixed point theorem. với mỗi i , μ . Keywords: The existence, lattice operator, Banach fixed point theorem. Ta thấy rằng: A = -A0 - µI; A0 = BB* = B*B; (B*u, v) = (u, Bv) Trường Đại học Điện lực với mọi u, v 2 Email: quan2n@ Khi đó, hệ (1) tương đương hệ sau với u (ui )i 2 : Ngày nhận bài: 05/9/2019 Ngày nhận bài sửa sau phản biện: 05/10/2019 t (t s)α 2 u (t) Au(s)ds f (t, u(t)), t 0, Ngày chấp nhận đăng: 20/12/2019 0 (α 1) (3) u0 u0 1. ĐẶT VẤN ĐỀ ở đây f (t, u(t)) fi (t, ui (t)) i . 2. TOÁN TỬ GIẢI THỨC VÀ NGUYÊN LÍ ĐIỂM BẤT ĐỘNG Trong không gian (xi )i : (xi ) , với chuẩn 2 2 i Kí hiệu (X) là không gian các toán tử tuyến tính bị .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.