TAILIEUCHUNG - Đề thi môn Hàm phức và phép biến đổi laplace năm học 2014-2015 (Mã đề thi: 1001-060-132)

Đề thi môn Hàm phức và phép biến đổi laplace năm học 2014-2015 gồm 13 câu hỏi giúp cho các bạn củng cố được các kiến thức về môn học thông qua việc giải những bài tập trong đề thi. Đây là tài liệu hữu ích dành cho các bạn sinh viên đang theo học môn Toán ứng dụng dùng làm tài liệu học tập và nghiên cứu. | ĐỀ THI MÔN: HÀM PHỨC VÀ PHÉP BIẾN ĐỔI LAPLACE MÃ MÔN HỌC: 1001060 THỜI GIAN: 75 PHÚT NGÀY THI: 04/06/2015 Đề thi gồm 02 trang bao gồm 10 câu hỏi trắc nghiệm và 3 câu hỏi tự luận (Được phép sử dụng tài liệu) MÃ ĐỀ THI: 1001-060-132 PHẦN TRẮC NGHIỆM LỰA CHỌN (5 ĐIỂM) Câu 1: Tìm biến đổi Laplace L te −2t sin (5t ) : 10p + 20 A. L te −2t sin (5t ) = 2 p 2 + 4 p + 29 ( B. L te −2t sin (5t ) = ) ( ) A. Re f (z ) = − C. Re ( f ( z ) ) = (p 2 ) − 4 p + 29 2 10 (p + 2) D. L te −2t sin (5t ) = 2 2 (p − 2) + 25 10p − 20 C. L te −2t sin (5t ) = 2 2 ( p + 2) + 25 Câu 2: Cho hàm phức f (z ) = 10p − 20 ( ) . Tìm phần thực Re z Re e z Im (z ) xe x cos y y ( f ) với z = x + iy . ( ) ( ) B. Re f (z ) = e x cos y xe x cos y y D. Re f (z ) = −e x cos y Câu 3: Cho hàm số u (x , y ) = ax + e x cos (ay ). Xác định hằng số phức a sao cho u(x , y ) là phần thực của một hàm giải tích trên ℂ . A. a = 1 hoặc a = 2 C. a = 1 hoặc a = −1 B. a = 0 D. Không tồn tại a 1 Câu 4: Khai triển Laurent của hàm f (z ) = (2z + 1) cos trong lân cận của điểm z = 0 là: z 2 1 1 A. ∑ (−1) + (2n + 2)! (2n )! z 2n n =0 ∞ n 2 1 C. ∑ (−1) + (n + 1)! z 2n −1 n ! z 2n n =0 ∞ 2 1 B. ∑ (−1) + (2n )! z 2n −1 (2n )! z 2n n =0 ∞ n 2 1 1 D. ∑ (−1) + (2n + 2)! (2n )! z 2n n =0 ∞ n n Câu 5: Cho hàm f (z ) có khai triển Laurent tại trong lân cận của điểm z = 0 là f (z ) = Tính tích phân I = ∫ ∞ ∑ (−1) n n =0 22n 1 . + (2n )! z 2n +1 (2n )! z 2n z 5 f (z )dz .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.