TAILIEUCHUNG - Đề thi môn Giải tích thực (Học kì I, năm học 2015-2016)

Xin giới thiệu tới các bạn học sinh, sinh viên "Đề thi môn Giải tích thực (Học kì I, năm học 2015-2016)". Đề thi gồm có 4 câu hỏi tự luận với thời gian làm bài 120 phút. Hy vọng tài liệu là nguồn thông tin hữu ích cho quá trình học tập và nghiên cứu của các bạn. | ĐỀ THI MÔN GIẢI TÍCH THựC Học kỳ I - 2015-2016 THỜI GIAN 120 PHÚT Thí sinh được tham khảo mọi tài liệu mang theo Sinh viên làm càng nhiều càng tốt điểm 10 dành cho một số sinh viên làm đúng nhiều câu hỏi. Trong các câu chỉ có một khẳng đinh thí sinh phải chứng minh khẳng đinh của mình. Trong các câu hỏi có trường hợp đúng có trường hợp sai thí sinh phải cho các thí dụ tương ứng và chứng minh các khẳng đinh trong các thí dụ đó. Giải các câu sau 1. Cho Q là một tập đo được trong IRn với độ đo Lebesgue. Cho p 2 1 1 fm trong L Q là một dãy hàm số hội tụ từng điểm về một hàm số f trên Q. Giả sử có g trong L Q sao cho fn x f x I g x với mọi x trong Q. Hỏi f có thuộc L Q và fm có hội tụ về f trong L Q hay không 2. Cho Q là một tập đo được trong IRn với độ đo Lebesgue và cho p 2 1 1 . Cho gm là một dãy trong D Q sao cho 521 1 gm Lp 1. Cho fm 2 gm. Đạt f x 221 1 f x . Hỏi f x có xác đinh hầu hết trên Q và f có thuộc L Q hay không 3. Cho un 2 L1 0 1 và fn 2 Un và gn 2 Un. Giả sử pi 0 fn x hội tụ với mọi x trong 0 1 . Hỏi 22j 0 gn x có hội tụ hầu hết trong 0 1 hay không 4. Cho g 2 u 2 L1 0 1 . Hỏi có hay không một dãy hàm đơn sn và một tập E c 0 1 sao cho m E 0 và sn x hội tụ đều về g x với mọi x 2 0 1 E Hết

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.