TAILIEUCHUNG - Chương 1: ĐẠO HÀM VÀ VI PHÂN HÀM NHIỀU BIẾN

Đạo hàm riêng cấp 1 của z = f(x,y) Đạo hàm riêng cấp cao của z = f(x,y) Sự khả vi và vi phân. Đạo hàm riêng cấp 1 của f(x, y) theo biến x tại (x0, y0) (Cố định y0, biểu thức là hàm 1 biến theo x, tính đạo hàm của hàm này tại x0) Đạo hàm riêng cấp 1 của f theo biến y tại (x0, y0) | ĐẠO HÀM VÀ VI PHÂN HÀM NHIỀU BIẾN Chương 1: Phần 1 Nội dung Đạo hàm riêng cấp 1 của z = f(x,y) Đạo hàm riêng cấp cao của z = f(x,y) Sự khả vi và vi phân. ĐẠO HÀM RIÊNG CẤP 1 Đạo hàm riêng cấp 1 của f(x, y) theo biến x tại (x0, y0) Đạo hàm riêng cấp 1 của f theo biến y tại (x0, y0) (Cố định y0, biểu thức là hàm 1 biến theo x, tính đạo hàm của hàm này tại x0) Ý nghĩa của đhr cấp 1 Cho mặt cong S: z = f(x, y), xét f’x(a, b), với c = f(a, b) Mphẳng y = b cắt S theo gt C1 đi qua P. (C1) : z = g(x) = f(x,b) Xem phần mặt cong S gần P(a, b, c) g’(a) = f’x(a, b) f’x(a, b) = g’(a) là hệ số góc tiếp tuyến T1 của C1 tại x = a. f’y(a, b) là hệ số góc tiếp tuyến T2 của C2 ( là phần giao của S với mp x = a) tại y = b Các ví dụ về cách tính. 1/ Cho f(x,y) = 3x2y + xy2 Tính cố định y0 = 2, ta có hàm 1 biến cố định x0 = 1, ta có hàm 1 biến f(x,y) = 3x2y + xy2 Tính với mọi (x, y) R2 Xem y là hằng, tính đạo hàm f(x, y) theo x Áp dụng tính: (Đây là cách thường dùng để tính đạo hàm tại 1 điểm) f(x,y) =

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.