TAILIEUCHUNG - Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2010 môn Toán, khối D (Đáp án chính thức) - Bộ GD&ĐT

Mời các em học sinh cùng tham khảo Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2010 môn Toán, khối D (Đáp án chính thức) của Bộ GD&ĐT sau đây, nhằm giúp các em đang chuẩn bị bước vào các kỳ thi tuyển sinh Đại học có thêm kinh nghiệm để làm bài thi đạt kết quả tốt nhất. Tham khảo kèm đề thi tuyển sinh đại học, cao đẳng năm 2010 môn Toán, khối D (Đề thi chính thức) của Bộ GD&ĐT. | BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC Câu I 2 0 điểm 1. 1 0 điểm II 2 0 điểm ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Môn TOÁN Khối D Đáp án - thang điểm gồm 04 trang ĐÁP ÁN - THANG ĐIỂM Đáp án Tập xác định R. Sự biến thiên - Chiều biến thiên y - 4x3 - 2x - 2x 2x2 1 y x 0 x 0. - Hàm số đồng biến trên khoảng -x 0 nghịch biến trên khoảng 0 x . - Cực trị Hàm số đạt cực đại tại x 0 yCĐ 6. - Giới hạn lim y lim y - X. x -X x X - Bảng biến thiên x y y Đồ thị 2. 1 0 điểm Điểm 0 25 0 25 -X 0 o _ 6 - X X - X Do tiếp tuyến vuông góc với đường thẳng y ịx - 1 nên tiếp tuyến có hệ số góc bằng - 6. 6 Do đó hoành độ tiếp điểm là nghiệm của phương trình - 4x3 - 2x - 6 x 1 suy ra tọa độ tiếp điểm là 1 4 . Phương trình tiếp tuyến y - 6 x - 1 4 hay y - 6x 10. 1. 1 0 điểm Phương trình đã cho tương đương với 2sinxcosx - cosx - 1 - 2sin2x 3sinx - 1 0 2sinx - 1 cosx sinx 2 0 1 . Do phương trình cosx sinx 2 0 vô nghiệm nên 1 sinx 1 x n k2n hoặc x 5n k2n k e Z . 2 6 6 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 Trang 1 4 Điểm Câu Đáp án 2. 1 0 điểm Điều kiện x - 2. Phương trình đã cho tương đương với 24x - 24 2 x 2 - 2x -4 0 . 24x - 24 0 x 1. 2A x 2 - 2x3-4 0 2y x 2 x3 - 4 1 . Nhận xét x V4 . Xét hàm số fix 2 Vx 2 - x3 4 trên Ví . f x . Ị - 3x2 0 suy ra fix nghịch biến trên rV4 . Vx 2 L Ta có f 2 0 nên phương trình 1 có nghiệm duy nhất x 2. Vậy phương trình đã cho có hai nghiệm x 1 x 2. III 1 0 điểm I f f 2x - 3i In x dx f 2x In x dx - 3 f dx. 1 V x 7 x dx 2 Đặt u Inx và dv 2xdx ta có du và v x2. x J 2x In x dx x2ln x - J x dx e2 - e 1. 1 v 711 1 2 ì 2 i dx f lnx d lnx 3-ln2 x 3 1 x 1 2 12 _ . e2 Vậy I e_ - 1. 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 IV 1 0 điểm Mlà trung điểm SA. AH 42 SH y SA2 - AH2 a244. HC 3aỊ2 SC y sH2 HC2 aJĨ SC AC. 4 Do đó tam giác SAC cân tại C suy raMlà trung điểm SA. Thể tích khối tứ diện SBCM. M là trung điểm SA SSCM 3 SSCA V sBCM 1 1 2 2 0 25 0 25 0 25 V SBCM 1 a3 6 ABC 48 14 0 25 V 1 0 điểm Điều kiện - 2 x 5. Ta .

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
41    172    5    22-11-2024
11    153    2    22-11-2024
13    150    1    22-11-2024
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.