TAILIEUCHUNG - Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2008 môn Toán, khối D (Đáp án chính thức) - Bộ GD&ĐT

 Tham khảo Đáp án - Thang điểm Kỳ thi tuyển sinh đại học, cao đẳng năm 2008 môn Toán, khối D (Đáp án chính thức) của Bộ GD&ĐT sau đây để biết kết quả của đề thi tuyển sinh đại học, cao đẳng năm 2008 môn Toán, khối D (Đề chính thức). Việc thử sức mình qua các đề thi ĐH-CĐ của các năm trước sẽ giúp các em học sinh làm quen với các dạng Toán và cách giải của các kỳ thi ĐH-CĐ. Chúc các em thi đạt kết quả cao. | BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC CAO ĐẲNG NĂM 2008 ĐỀ CHÍNH THỨC Môn ToáN khối D Đáp án - Thang điểm gồm 04 trang Câu I Nội dung Điểm 2 00 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số 1 00 điểm Tập xác định D R. Sự biến thiên y 3x2 - 6x y 0 x 0 x 2. 0 25 II ycĐ y 0 4 ycT y 2 0. Bảng biến thiên Đồ thị x ra 0 2 ra 0 25 y y ra 0 - 0 4 0 0 25 0 25 2 Chứng minh rằng mọi đường thẳng . 1 00 điểm Gọi C là đồ thị hàm số 1 . Ta thấy I 1 2 thuộc C . Đường thẳng d đi qua I 1 2 với hệ số góc k k - 3 có phương trình y kx - k 2. Hoành độ giao điểm của C và d là nghiệm của phương trình x3 3x2 4 k x 1 2 x 1 x2 2x k 2 0 r x 1 ứng với giao điểm I _x2 2x k 2 0 . Do k 3 nên phương trình có biệt thức A 3 k 0 và x 1 không là nghiệm của . Suy ra d luôn cắt C tại ba điểm phân biệt I xj yI A xA yA B xB yB với xA xB là nghiệm của . Vì xA xB 2 2xI và I A B cùng thuộc d nên I là trung điểm của đoạn thẳng AB đpcm . 0 50 0 50 2 00 1 Giải phương trình lượng giác 1 00 điểm Phương trình đã cho tương đương với 4sinx cos2x s in2x 1 2cosx 2cosx 1 sin2x 1 0. 1 2k cosx x - k2n. 0 50 2 3 0 50 n sin2x 1 x kn. 4 Nghiệm của phương trình đã cho là x k2n x kn k e Z . 3 4 Trang 1 4 2 Giải hệ phương trình 1 00 điểm Điều kiện x 1 y 0. 0 50 Hệ phương trình đã cho tương đương với x y x - 2y -1 0 1 x 2y - y x -1 2x - 2y 2 Từ điều kiện ta có x y 0 nên 1 x 2y 1 3 . Thay 3 vào 2 ta được y 1 ự2y 2 y 1 y 2 do y 1 0 Nghiệm của hệ là x y 5 2 . x 5. 0 50 III 2 00 1 Viết phương trình mặt cầu đi qua các điểm A B C D 1 00 điểm Phương trình mặt cầu cần tì x2 y2 z2 2ax 2by 2 Thay tọa độ của các điểm A m có dạng cz d 0 trong đó a2 b2 c2 - d 0 . B C D vào ta được hệ phương trình 6a 6b d -18 6a 6c d -18 6b 6c d -18 6a 6b 6c d -27. 0 50 Giải hệ trên và đối chiếu với điều kiện ta được phương trình mặt cầu là x2 y2 z2 - 3x - 3y - 3z 0. 0 50 2 Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC 1 00 điểm Mặt cầu đi qua A Gọi phương trình Thay tọa độ các đ 1 Do đó phương trì B C D có tâm 1 3 3 Ậ 1.

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.