TAILIEUCHUNG - Báo cáo khoa học: "Semi-Supervised Training for Statistical Word Alignment"

We introduce a semi-supervised approach to training for statistical machine translation that alternates the traditional Expectation Maximization step that is applied on a large training corpus with a discriminative step aimed at increasing word-alignment quality on a small, manually word-aligned sub-corpus. We show that our algorithm leads not only to improved alignments but also to machine translation outputs of higher quality. | Semi-Supervised Training for Statistical Word Alignment Alexander Fraser ISI University of Southern California 4676 Admiralty Way Suite 1001 Marina del Rey CA 90292 fraser@ Daniel Marcu ISI University of Southern California 4676 Admiralty Way Suite 1001 Marina del Rey CA 90292 marcu@ Abstract We introduce a semi-supervised approach to training for statistical machine translation that alternates the traditional Expectation Maximization step that is applied on a large training corpus with a discriminative step aimed at increasing word-alignment quality on a small manually word-aligned sub-corpus. We show that our algorithm leads not only to improved alignments but also to machine translation outputs of higher quality. 1 Introduction The most widely applied training procedure for statistical machine translation IBM model 4 Brown et al. 1993 unsupervised training followed by post-processing with symmetrization heuristics Och and Ney 2003 yields low quality word alignments. When compared with gold standard parallel data which was manually aligned using a high-recall precision methodology Melamed 1998 the word-level alignments produced automatically have an F-measure accuracy of and see Section 2 for details . In this paper we improve word alignment and subsequently MT accuracy by developing a range of increasingly sophisticated methods 1. We first recast the problem of estimating the IBM models Brown et al. 1993 in a discriminative framework which leads to an initial increase in word-alignment accuracy. 2. We extend the IBM models with new sub models which leads to additional increases in word-alignment accuracy. In the process we also show that these improvements are explained not only by the power of the new models but also by a novel search procedure for the alignment of highest probability. 3. Finally we propose a training procedure that interleaves discriminative training with maximum likelihood training. These steps lead to word alignments

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.