TAILIEUCHUNG - Intro to Differential Geometry and General Relativity - S. Warner Episode 9

Tham khảo tài liệu 'intro to differential geometry and general relativity - s. warner episode 9', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | g Rabcd e Rabec d Rabde c 0 Since gj k 0 see Exercise Set 8 we can slip the gbc into the derivative getting Rad e Rae d Ra de c 0 Contracting again gives gữd -Rad e Rae d RaCde c 0 -R e Rded Rdcdec 0 -Re Rded Rcec 0. Combining terms and switching the order now gives RÌ e b - ĨR e 0 Rb ib - 0 Multiplying this by gae we now get Rab b - 2 gabR b 0 Rab is symmetric or Gabb 0 where we make the following definition Einstein Tensor G ab Rib 1 gabR Einstein s field equation for a vacuum states that Gab 0 as we shall see later. . Example Take the 2-sphere of radius r with polar coordinates where we saw that 81 g r2sin2f 0 0 r2 The coordinates of the covariant curvature tensor are given by Rabcd 2 gbc ad gbd ac gad bc gac bd a c jbd a d jbc Let us calculate Rgýgý. Note when we use Greek letters we are referring to specific terms so there is no summation when the indices repeat So a c 0 and b d Ộ. Incidentally this is the same as RỌIIỌII by the last exercise below. The only non-vanishing second derivative of g is geew 2r2 cos2ộ - sin20X giving 1 2a 2ja 2 gộd dộ gTT ee g8ộ ộd gee ộộ r sin T cos t . The only non-vanishing first derivative of g is gee T 2r2sin T cos f giving TLTjbd j 0 since b d T eliminates the second term two of these indices need to be e in order for the term not to vanish. T-j rj r 1 2 cos T Í n 2- 2_2 radrjbc vej 4 1 sinf J -2r sin T cos T -r cos f Combining all these terms gives n _ 2 .2 2 .2 2 Reộ0ộ r sin T - cos f r cos T r2sin2f. We now calculate Ra Ree g sin2f 82 and Rộộ - g Rộdộe _ sin2 3ự _ 1 - sin20 All other terms vanish since g is diagonal and R is antisymmetric. This gives R - gabRab - geeRee g R - 2 2 sin20 2 - J r sin Ộ r r .2 Summary of Some Properties of Curvature Etc. rabc Rabcd R abcd R abcd Rab - R -ab R - gabR Ra b Rab - gágbÍR I Gab - Rab 2 gabR - r a Rabdc R bacd R cdab ầbi - I ba ab ab - gaiR h ib - gaCgbdRabcd abc cba Rabcd Rabdc Note that a b and c d always go together R t - R Exercise Set 10 1. Derive the .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.