TAILIEUCHUNG - Optimal Control with Engineering Applications Episode 14

Tham khảo tài liệu 'optimal control with engineering applications episode 14', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 124 Solutions Reverting now to operator notation we have found the following results t t I d W t Ý t T UA t dT where the operator U has been defined on p. 71. Considering this result for A A PC and comparing it with the equations describing the costate operator Ao in Chapter establishes that Ao t is a positive operator at all times t G ta tb because Ỷ . . is a positive operator irrespective of the underlying matrix A . In other words infimizing the Hamiltonian H is equivalent to infimizing 5. Of course we have already exploited the necessary condition d51 dP 0 because the Hamiltonian is of the form H A 5 P . The fact that we have truly infimized the Hamiltonian and 51 with respect to the observer gain matrix P is easily established by expressing 5 in the form of a complete square as follows 5 A5 PC 5 5At 5C TPT BQBT PRPT A5 5At BQBt 5CTR-1C 5 P 5CtR-1 R P 5CtR-1 t . The last term vanishes for the optimal choice Po 5CTR-1 otherwise it is positive-semidefinite. This completes the proof. Chapter 3 1. Hamiltonian function H uY Aax Au Maximizing the Hamiltonian dH du uY-1 A 0 y 1 uY 2 0 . d2H du2 Since 0 Y 1 and u 0 the H-maximizing control is 1 u AT-1 0 . In the Hamilton-Jacobi-Bellman partial differential equation J H 0 for the optimal cost-to-go function J x t A has to be replaced by dx and u by the H -maximizing control . dJ u V dx Solutions 125 Thus the following partial differential equation is obtained J J 1 - 1 J 0 . dt dx 7 J x According to the final state penalty term of the cost functional its boundary condition at the final time tb is J x tb xY . Y Inspecting the boundary condition and the partial differential equation reveals that the following separation ansatz for the cost-to-go function will be successful J x t xY G t with G tb . Y The function G t for t e ta tb remains to be determined. Using J 1 x G and J x g dt Y dx the following form of the Hamilton-Jacobi-Bellman partial differential equation is obtained xY G YGa y 1 G 1 0 . Therefore the .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.