TAILIEUCHUNG - Fundamentals_of_Robotic_Mechanical_Systems Part 4

Tham khảo tài liệu 'fundamentals_of_robotic_mechanical_systems part 4', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 76 3. Fundamentals of Rigid-Body Mechanics coefficients a and I being determined from the condition that the product of At a by its inverse should be 1 which yields __d _ 3 2 1 cos ị 2 1 cos ự and hence ATA - J _1 1- T 3 17 2 1 cos ị 2 1 cos ị On the other hand ATb Q - lf Q - l a - dA Upon solving eq. for p. and substituting relations and into the expression thus resulting one finally obtains 2 1 cos p We have thus defined a line of the rigid body under study that is completely defined by its point p. of position vector p. and a unit vector e determining its direction. Moreover we have already defined the pitch of the associated motion eq. . The line thus defined along with the pitch determines the screw of the motion under study. The Placker Coordinates of a Line Alternatively the screw axis and any line for that matter can be defined more conveniently by its Pliicker coordinates. In motivating this concept we recall the equation of a line passing through two points p. and p. of position vectors p. and p. as shown in Fig. . If point p lies in then it must be collinear with p. and p. a property that is expressed as p. - p. X p - p. 0 FIGURE . A line passing through two points. General Rigid-Body Motion and Its Associated Screw 77 or upon expansion p. - p. X p p. X p. - p. 0 If we now introduce the cross-product matrices p. and p. of vectors p. and p. in the above equation we have an alternative expression for the equation of the line namely P. - p. p p. X p. - p. 0 The above equation can be regarded as a linear equation in the homogeneous coordinates of point P namely P. -p. p. X p. -p. p 0 It is now apparent that the line is defined completely by two vectors the difference p. p. or its cross-product matrix for that matter and the cross product p. X p. p. . We will thus define a 6-dimensional array 7Z containing these two vectors namely 7z. p- p- P X p- P whose six scalar entries are the Phicker .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.