TAILIEUCHUNG - An Introduction to Financial Option Valuation Mathematics Stochastics and Computation_2

Tham khảo tài liệu 'an introduction to financial option valuation mathematics stochastics and computation_2', tài chính - ngân hàng, tài chính doanh nghiệp phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 3 Random variables OUTLINE discrete and continuous random variables expected value and variance uniform and normal distributions Central Limit Theorem Motivation The mathematical ideas that we develop in this book are going to involve random variables. In this chapter we give a very brief introduction to the main ideas that are needed. If this material is completely new to you then you may need to refer back to this chapter as you progress through the book. Random variables probability and mean If we roll a fair dice each of the six possible outcomes 1 2 . 6 is equally likely. So we say that each outcome has probability 1 6. We can generalize this idea to the case of a discrete random variable X that takes values from a finite set of numbers X1 X2 . xm . Associated with the random variable X are a set of probabilities P1 P2 . pm such that xi occurs with probability pi. We write P X xi to mean the probability that X xi . For this to make sense we require Pi 0 for all i negative probabilities not allowed 22m 1 pi 1 probabilities add up to 1 . The mean or expected value of a discrete random variable X denoted by E X is defined by m E X xipi. i 1 21 22 Random variables Note that for the dice example above we have E X 11 12 16 6 1 6 6 6 2 which is intuitively reasonable. Example A random variable X that takes the value 1 with probability p where 0 p 1 and takes the value 0 with probability 1 p is called a Bernoulli random variable with parameter p. Here m 2 xi 1 X2 0 P1 p and p2 1 p in the notation above. For such a random variable we have E X 1 p 0 1 p p. A continuous random variable may take any value in R. In this book continuous random variables are characterized by their density functions. If X is a continuous random variable then we assume that there is a real-valued density function f such that the probability of a X b is found by integrating f x from X a to X b that is P a X b ị f x dx. Here P a X b means the probability that a X b . For this

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.