TAILIEUCHUNG - Báo cáo nghiên cứu khoa học: "FINITE ELEMENT ANALYSIS OF ELASTO-PLASTIC BOUNDARY FOR SOME STRUCTURE PROBLEMS"

The finite element method (FEM) is used widely in analysis of elastoplastic behaviours for structures. The analysis often involves a two-stage process: first, the internal force field acting on the structural material must be defined, and second, the response of the material to that force field must be determined. | TẠP CHÍ PHÁT TRIỂN KH CN TẬP 9 SÓ 8 - 2006 FINITE ELEMENT ANALYSIS OF ELASTO-PLASTIC BOUNDARY FOR SOME STRUCTURE PROBLEMS Trương Tích Thiện 1 Cao Bá Hoàng 2 1 Trường Đại học Bách Khoa ĐHQG-HCM 2 Bộ Xây Dựng Manuscript Received on January 26 2006 Manuscript Revised August 28 st 2006 ABSTRACT The finite element method FEM is used widely in analysis of elasto-plastic behaviours for structures. The analysis often involves a two-stage process first the internal force field acting on the structural material must be defined and second the response of the material to that force field must be determined. In other words the analysis of behaviours of structural material is establishment relationships between stresses and strains in the structure in the plastic as well as elastic ranges. It furnishes more realistic estimates of load-carrying capacities of structures and provides a better understanding of the reaction of the structural elements to the forces induced in the material. Key words Elasto-plastic plasticity Timoshenko analysis 1. INTRODUCTION It is generally regarded that the origin of plasticity as a branch of mechanics of continua dated back to a series of papers from 1864 to 1872 by Tresca on the extrusion of metals in which he proposed the first yield condition. The actual formulation of the theory was done in 1870 by St. Venant who introduced the basic constitutive relations for what today we would call rigid perfectly plastic materials in plane stress. A generalization similar to the results of Levy was arrived independently by von Mises in a landmark paper in 1913 accompanied by his well-known pressure-insensitive yield criterion J2-theory or octahedral shear stress yield condition . In 1924 Prandtl extended the St. Venant-Levy-von Mises equations for the plane continuum problem to include the elastic component of strain and Reuss in 1930 carried out their extension to three dimensions. The appropriate flow rule associated with the Tresca yield condition which

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.