TAILIEUCHUNG - Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design - Part 41

Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design - Part 41 studies the combination of various methods of designing for reliability, availability, maintainability and safety, as well as the latest techniques in probability and possibility modelling, mathematical algorithmic modelling, evolutionary algorithmic modelling, symbolic logic modelling, artificial intelligence modelling, and object-oriented computer modelling, in a logically structured approach to determining the integrity of engineering design. . | Theoretical Overview of Availability and Maintainability in Engineering Design 383 Equipment and or system utilisation. Failure occurrence in the equipment. Failure mode of the failed component. Failure consequence and severity. Number of similar parts or components. Frequency of preventive maintenance replacement. Although seemingly problematic from the perspective of complexity the multiplicity of similar parts in each component with usually a large number of similar components within each system is in fact beneficial in characterising the demand for different kinds of spares. It validates the application of classical limit theory concerning the maintenance renewal process. This is illustrated by the following theorem Drenick 1960 given N components indexed by i N K 1 of which the failure processes are independent renewal processes let Fi t be the distribution for the time between failures of component i. Furthermore A is the expected number of renewals per time unit so that its reciprocal 1 At is the expected time between failures of component i. Let Gn t be the distribution of the time between failures across all components. If N i lim a Y Ai 0 N i 1 ii Fi t Ata and A 0 a 0 as t 0 ii then N lim Gn I t Y A I 1 e At for t 0 . N -t I Z 1 Consequently Drenick s theorem states that under the above assumptions the pooled output will approach a Poisson process as the number of failures increase. Condition i is non-restrictive. Condition ii is satisfied by all failure distributions commonly used for example the Weibull distribution. Thus when the demand for a spare is the result of several component failure processes which it normally is the demand tends to be approximated by a Poisson distribution that is the demand rate is constant irrespective of whether the individual components have arbitrary failure characteristics. There are only a few quantitative methods available when determining spares requirements. These are identified as analytical methods based

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.