TAILIEUCHUNG - Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang

"Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang " Trong các kỳ thi tuyển sinh sau đại học, đại số tuyến tính là môn cơ bản là môn bắc buộc đối với các thí sinh thi vào sau đại học vào cách ngành toán, cụ thể là chuyên ngành đại số, hình học, giải tích. Các bài viết nhằm cung cấp cho bạn đọc một cách hệ thống và chọn lọc những kiến thức và kỹ năng cơ bản với mục đích giúp người đọc chủ động và tích cực hơn trong. | ĐẠI SỐ CƠ BẢN ÔN THI THẠC SĨ TOÁN HỌC Bài 11. Cơ Sở Số Chiều Của Không Gian Vectơ PGS TS Mỵ Vinh Quang Ngày 27 tháng 3 năm 2005 1. Cơ sở Cho V là không gian vectơ a1 a2 . an là một hệ vectơ của V. Hệ vectơ a1 a2 . an gọi là hệ sinh của V nếu mọi vectơ ß G V đều biểu thị tuyến tính được qua hệ a1 a2 . an. Hệ vectơ a1 a2 . an gọi là một cơ sở của không gian vectơ V nếu nó là hệ sinh của V và là hệ độc lập tuyến tính. Từ định nghĩa hai cơ sở bất kỳ của V đều tương đương và độc lập tuyến tính. Do đó theo định lý cơ bản chúng có số vectơ bằng nhau. Số đó gọi là số chiều V ký hiệu là dimV. Vậy theo định nghĩa dimV số vectơ của một cơ sở bất kỳ của V Không gian vectơ có cơ sở gồm hữu hạn vectơ gọi là không gian vectơ hữu hạn chiều. Không gian vectơ khác không không có cơ sở gồm hữu hạn vvectơ gọi là không gian vectơ vô hạn chiều. Đại số tuyến tính chủ yếu xét các không gian vectơ hữu hạn chiều. 2. Các ví dụ Ví dụ 1. Không gian Rn xét các vectơ 61 1 0 . 0 62 0 1 . 0 63 0 0 . 1 Dễ dàng kiểm tra 61 62 . 6n là cơ sở của Rn gọi là cơ sở chính tắc của Rn và ta có dimRn n Ví dụ 2. Trong không gian vectơ các ma trận cấp m X n hệ số thực Mmxn R . 1 Ta xét hệ vectơ Ejj trong đó E 0 1 0 hàng i 1 i m 1 j n 0 0 T cột j là cơ sở của Mmxn R và do đó ta có dimMmxn R mn Ví dụ 3. Rn x là tập các đa thức với hệ số thực có bậc n với các phép toán thông thường là một không gian vectơ. Hệ vectơ 1 x x2 . xn là một cơ sở của Rn x và ta có dimRn x n 1 3. Tính chất cơ bản của không gian vectơ hữu hạn chiều Cho V là không gian vectơ hữu hạn chiều dimV n. Khi đó a Mọi hệ vectơ có nhiều hơn n vectơ đều phụ thuộc tuyến tính b Mọi hệ có n vectơ độc lập tuyến tính đều là cơ sở của V c Mọi hệ có n vectơ là hệ sinh của V đều là cơ sở của V d Mọi hệ độc lập tuyến tính có k vectơ đều có thể bổ sung têm n k vectơ để được cơ sở của V Chú ý rằng từ tính chất b c nếu biết dimV n thì để chứng minh một hệ n vectơ là cơ sở của V ta chỉ cần chứng minh hệ đó là hệ độc lập tuyến tính hoặc hệ đó là hệ sinh. 4. Tọa độ

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.