TAILIEUCHUNG - Inscribed triangle with smallest diameter

In this paper we will use geometric methods to solve the following problem: Given a triangle ABC, how to find a trio of points M, N and P lying on the side BC, CA and AB, respectively, such that the diameter of the triangle MNP is smallest. | JOURNAL OF SCIENCE OF HNUE 2011 Vol. 56 N . 1 pp. 34-39 INSCRIBED TRIANGLE WITH SMALLEST DIAMETER Vu Dinh Hoa Hanoi National University of Education E-mail hoavd@ Abstract. The problem considered in 4 and 3 is as follows Given n red points and m green points on plane how to find a pair of red-green points such that the distance between them is smallest. This problem can be expanded for 3 sets of colored points 5 Given n red points m green points and p blue points on plane how to find a trio of red-green-blue points such that the diameter of them is smallest. The diameter of the trio of 3- colored points is defined as size of the longest edge of the triangle formed by those 3 points. This problem seems to be a fundamental problem but it is still open. An heuristic algorithm for this problem can be found in 5 . For the case that the sets of the given points are infinity for example the set of points on a line then the combinatorial algorithm does not work any more. In this paper we will use geometric methods to solve the following problem Given a triangle ABC how to find a trio of points M N and P lying on the side BC CA and AB respectively such that the diameter of the triangle M N P is smallest. Keywords The diameter trio of 3-colored points triangles 1. Introduction The problem of 3-colored points on plane is among the series of min-max problems see 1 2 3 4 . The problem could be described as follows Given n red points m green points and p blue points on plane how to find a trio of 3 different- colored points such that the diameter of them is smallest. The diameter of the trio of 3-colored points is defined as size of the longest edge of the triangle formed by those 3 points. This problem can be solved by applying an exhaustive search algorithm testing every trio of 3 different colored points and finding the closest one. Totally there are trios of 3-colored points and if we do an exhaustive search it will take operations. The complexity of

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.