TAILIEUCHUNG - Applications of a special polynomial class of TSP

A hypothetical problem which we call a “buried treasure problem” is presented where the objective is to locate m objects among N fixed equi-spaced caches in order to minimize a measure of the risk of loss. The general problem is shown to be NPhard. However, a sub problem may be solved as a special class of TSP in O (N log N) time. Several applications are noted. | Yugoslav Journal of Operations Research 15 (2005), Number 1, 5-14 APPLICATIONS OF A SPECIAL POLYNOMIAL CLASS OF TSP Jack BRIMBERG, Royal Military College of Canada, CP17000 Stn Forces Kingston, Ontario, Canada K7K 7B4 Ephraim KORACH Ben-Gurion University of the Negev, Beer-Sheva, Israel Mokhtar AMAMI Royal Military College of Canada, CP17000 Stn Forces Kingston, Ontario, Canada K7K 7B4 Presented at XXX Yugoslav Simposium on Operations Research Received: January 2004 / Accepted: January 2005 Abstract: A hypothetical problem which we call a “buried treasure problem” is presented where the objective is to locate m objects among N fixed equi-spaced caches in order to minimize a measure of the risk of loss. The general problem is shown to be NPhard. However, a sub problem may be solved as a special class of TSP in O (N log N) time. Several applications are noted. Keywords: Partition problem, traveling salesman problem, pyramidal tours. 1. INTRODUCTION A fictional scenario is presented which we term a “buried treasure problem”. The objective is to partition and locate m objects of value among N secret caches in order to minimize a measure of the risk of loss. Under the model assumptions, the general problem is shown to be reducible to the partition problem which is NP-complete (., Garey and Johnson (1979), p. 60-61; Simeone (1986)). However, for a specified partitioning of the set of objects, the assignment of subsets to the individual caches may be formulated as a special class of traveling salesman problem (TSP), and solved in polynomial time. 6 J. Brimberg, E. Korach, M. Amami / Applications of a Special Polynomial Class of TSP The distance matrix of the formulated TSP is shown to possess the anti-Monge property (., see Burkard et al. (1995) for a definition). For a general Monge matrix, it is well known that an optimal tour may be constructed with a pyramidal sequence in O(N2) operations using dynamic programming (see Lawler, Lenstra, Rinnooy Kan .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.