TAILIEUCHUNG - Bài giảng Toán cao cấp C1: Chương 2 - Phan Trung Hiếu

Bài giảng Toán cao cấp C1 Chương 2 Đạo hàm và vi phân hàm một biến do Phan Trung Hiếu biên soạn có kết cấu nội dung gồm 3 bài, giới thiệu đến các bạn những nội dung sau: Đạo hàm của hàm một biến, hàm khả vi, vi phân của hàm số, đạo hàm và vi phân cấp cao. | 06/10/2017 Chương 2: Đạo hàm và vi phân hàm một biến GV. Phan Trung Hiếu §1. Đạo hàm của hàm một biến §1. Đạo hàm của hàm một biến §2. Hàm khả vi, vi phân của hàm số §3. Đạo hàm và vi phân cấp cao LOG O I. Đạo hàm cấp một: Định nghĩa . Cho hàm số f(x) xác định trên khoảng mở chứa x0. Đạo hàm (cấp một) của hàm số f(x) tại x0, ký hiệu y ( x0 ) f ( x0 ) , được tính bởi f ( x0 ) lim x x0 f ( x) f ( x0 ) x x0 2 Trong định nghĩa trên, nếu đặt x x x0 : Số gia của biến số tại x0. y f ( x) f ( x0 ) f ( x0 x) f ( x0 ): Số gia của hàm số tại x0. Khi đó f ( x0 ) lim x 0 nếu giới hạn tồn tại hữu hạn. Chú ý . Nếu f ( x0 ) tồn tại thì f(x) được gọi là khả vi tại x0. 3 Ví dụ : Tìm đạo hàm của hàm số tại x0 0. ln(1 x 2 ) khi x 0 f ( x) x 0 khi x 0 Định nghĩa (Đạo hàm bên trái) f ( x0 ) lim f ( x ) f ( x0 ) x x0 f ( x0 ) lim y f ( x0 x) f ( x0 ) lim x 0 x x f ( x0 h) f ( x0 ) lim h 0 h 4 Định lý f ( x0 ) L f ( x0 ) f ( x0 ) L Ví dụ : Xét sự tồn tại đạo hàm của hàm số f ( x) x tại x0 0. f ( x) f ( x0 ) x x0 x x0 Định nghĩa (Đạo hàm bên phải) x x0 5 Định lý . f(x) có đạo hàm tại x0 f(x) liên tục tại x0. 6 1 06/10/2017 Ví dụ : Tìm m để hàm số e ( x x ) khi x 0 f ( x) khi x 0 m x 2 khả vi tại x0 0. Ví dụ : Tìm a, b để hàm số 3x 2 5 khi x 1 f ( x) ax b khi x 1 có đạo hàm tại x0 1. 7 Ví dụ : Tính đạo hàm của các hàm số sau a) y arctan x . Các công thức tính đạo hàm: Xem Bảng 2. . Quy tắc tính đạo hàm: Với u u ( x ), v v ( x) , ta có ( k .u ) k .u (u v) u v () u .v u u .v v2 v . Đạo hàm của hàm số hợp: Xét hàm số hợp f(x)=y[u(x)]. Khi đó x y ( x) yu .u 8 III. Ý nghĩa kinh tế của đạo hàm: . Biên tế (Giá trị cận biên-Marginal): Cho hàm số y = f(x) xác định trên D với x, y là các biến số kinh

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.