TAILIEUCHUNG - Chuyên đề 1: Ứng dụng đạo hàm để xét tính biên thiên và vẽ đồ thị hàm số - Chủ đề 1.1

Chuyên đề 1: Ứng dụng đạo hàm để xét tính biên thiên và vẽ đồ thị hàm số - Chủ đề tính đơn điệu của hàm số trình bày các kiến thức cơ bản và một số bài tập kèm theo, ! | ỨNG DỤNG ĐẠO HÀM KHẢO SÁT TÍNH BIẾN THIÊN VÀ VẼ ĐỒ THỊ HÀM SỐ Chuyên đề 1 Chủ đề . TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ A. KIẾN THỨC CƠ BẢN 1. Định nghĩa: Cho hàm số y = f ( x ) xác định trên K , với K là một khoảng, nửa khoảng hoặc một đoạn. • Hàm số y = f ( x ) đồng biến (tăng) trên K nếu ∀x1 , x2 ∈ K , x1 f ( x2 ) . 2. Điều kiện cần để hàm số đơn điệu: Giả sử hàm số y = f ( x ) có đạo hàm trên khoảng K . • Nếu hàm số đồng biến trên khoảng K thì f ′ ( x ) ≥ 0, ∀x ∈ K . • Nếu hàm số nghịch biến trên khoảng K thì f ′ ( x ) ≤ 0, ∀x ∈ K . 3. Điều kiện đủ để hàm số đơn điệu: Giả sử hàm số y = f ( x ) có đạo hàm trên khoảng K . • Nếu f ′ ( x ) > 0, ∀x ∈ K thì hàm số đồng biến trên khoảng K . • Nếu f ′ ( x ) 0, ∀x ∈ K trên khoảng ( a; b ) thì hàm số đồng biến trên đoạn [ a; b ] . Nếu f ′ ( x ) ≥ 0, ∀x ∈ K ( hoặc f ′ ( x ) ≤ 0, ∀x ∈ K ) và f ′ ( x ) = 0 chỉ tại một số điểm hữu hạn của K thì hàm số đồng biến trên khoảng K ( hoặc nghịch biến trên khoảng K ). B. KỸ NĂNG CƠ BẢN 1. Lập bảng xét dấu của một biểu thức P ( x ) Bước 1. Tìm nghiệm của biểu thức P( x ) , hoặc giá trị của x làm biểu thức P( x ) không xác định. Bước 2. Sắp xếp các giá trị của x tìm được theo thứ tự từ nhỏ đến lớn. Bước 3. Sử dụng máy tính tìm dấu của P( x ) trên từng khoảng của bảng xét dấu. 2. Xét tính đơn điệu của hàm số y = f ( x ) trên tập xác định Bước 1. Tìm tập xác định D. Bước 2. Tính đạo hàm y ′ = f ′( x ) . Bước 3. Tìm nghiệm của f ′( x ) hoặc những giá trị x làm cho f ′( x ) không xác định. Bước 4. Lập bảng biến thiên. Bước 5. Kết luận. 3. Tìm điều kiện của tham số m để hàm số y = f ( x ) đồng biến, nghịch biến trên khoảng ( a; b ) cho trước. Cho hàm số y = f ( x, m) có tập xác định D, khoảng (a; b) ⊂ D : Hàm số nghịch biến trên (a; b) ⇔ y ' 0, ∀x ∈ (a; b) Chuyên đề Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số 1

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.