TAILIEUCHUNG - Phần III: Vi tích phân

Phép tính vi phân hàm số nhiều biến số là sự mở rộng một cách tự nhiên và cần thiết của phép tính vi phân hàm số một biến số. Các bài toán thực tế thường xuất hiện sự phụ thuộc một biến số vào hai biến số hoặc nhiều hơn, Vì vậy, khảo sát hàm số nhiều biến số vừa mang tính tổng quát vừa mang tính thực tiễn. Đây là những kiến thức cần thiết để nghiên cứu các kiến thức chuyên. | PHẦN II. VI TÍCH PHÂN Chương 1. HÀM SỐ - GIỚI HẠN HÀM SỐ Chương 2. ĐẠO HÀM VÀ VI PHÂN chương 3. HÀM NHIỀU BIẾN C1. HÀM SỐ - GIỚI HẠN HÀM SỐ 1. MỘT SỐ KHÁI NIỆM VỀ HÀM SỐ MỘT BIẾN Định nghĩa ánh xạ: Cho X, Y là hai tập bất kỳ. Nếu x X, cho tương ứng duy nhất một y = f(x) Y theo qui tắc f, thì f gọi là một ánh xạ từ X vào Y. Ký hiệu: Đơn ánh: x1, x2 X, x1 ≠ x2 => f(x1) ≠ f(x2) Toàn ánh: Với mỗi y Y, x X: y = f(x) Song ánh: Nếu f vừa là đơn ánh và toàn ánh Nếu f: X Y là song ánh thì f-1: Y X là ánh xạ ngược của f C1. HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa hàm số: Với X R, ta gọi ánh xạ f:X Y là một hàm số một biến. Ký hiệu là y = f(x). x: biến độc lập y: biến phụ thuộc. Tập X: miền xác định Tập f(X) = {f(x): x X}: miền giá trị của f Ví dụ: Tìm miền xác định, giá trị: y = 2x2 - 4x + 6 C1. HÀM SỐ - GIỚI HẠN HÀM SỐ Định nghĩa phép toán: Cho f, g cùng mxđ X: f = g: f(x) = g(x), x X (f g)(x) = f(x) g(x), x X (fg)(x) = f(x)g(x), x X Hàm số f/g có miền xác .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.