TAILIEUCHUNG - Ebook A course in number theory and cryptography (2E): Part 2

(BQ) Part 2 book "A course in number theory and cryptography" has contents: Primality and Factoring, pseudoprimes, the rho method, fermat factorization and factor bases, elliptic curve cryptosystems, elliptic curve primality test, elliptic curve factorization,.and other contents. | v Primality and Factoring There are many situations where one wants to know if a large number n is prime. For example, in the RSA public key cryptosystem and in various cryptosystems based on the discrete log problem in finite fields, we need to find a large "random" prime. One interpretation of what this means is to choose a large odd integer n0 using a generator of random digits and then test no' no + 2, . . . for primality until we obtain the first prime which is 2:: n0 • A second type of use of primality testing is to determine an integer of a certain very special type is a prime. For example, for some large prime f we might want to know whether 2 1 - 1 is a Mersenne prime. If we're working in the field of 2 1 elements, we saw that every element "I= 0, 1 is a generator of F ; , if ( and only if ) 2 1 - 1 is prime ( see Ex. 13 ( a) of § ILl) . A primality test is a criterion for a number n not t o be prime. If n ''passes" a primality test, then it may be prime. If it passes a whole lot of primality tests, then it is very likely to be prime. On the other hand, if n fails any single primality test, then it is definitely composite. But that leaves us with a very difficult problem: finding the prime factors of n. In general, it is much more time-consuming to factor a large number once it is known to be composite ( because it fails a primality test) than it is to find a prime number of the same order of magnitude. ( This is an empirical statement, not a theorem; no assertion of this sort has been proved. ) The security of the RSA cryptosystem is based on the assumption that it is much easier for someone to find two extremely large primes p and q than it is for someone else, knowing n = pq but not p or q, to find the two factors in n. After discussing primality tests in § 1, we shall describe three different factorization methods in §§2-5. 126 V. Primality and Factoring 1 Pseudoprimes Have you ever noticed that there's no attempt being made to find really

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.