TAILIEUCHUNG - Toán cao cấp 1-Bài 2: Đạo hàm và vi phân

BÀI 2: ĐẠO HÀM VÀ VI PHÂN Mục tiêu • Hiểu được khái niệm đạo hàm, vi phân của hàm số. • Giải được các bài tập về đạo hàm, vi phân. • Biết vận dụng linh hoạt các định lý, khai triển và các quy tắc trong giải bài tập. • Khảo sát tính chất, dáng điệu của các hàm cơ bản. • Hiểu ý nghĩa hình học cũng như ý nghĩa thực tiễn của đạo hàm và vi phân. | TOPICA C1I HIIU law IA ÕUẬỄ If Bài 2 Đạo hàm và vi phân BÀI 2 ĐẠO HÀM VÀ VI PHÂN Mục tiêu Hiểu được khái niệm đạo hàm vi phân của hàm số. Giải được các bài tập về đạo hàm vi phân. Biết vận dụng linh hoạt các định lý khai triển và các quy tắc trong giải bài tập. Khảo sát tính chất dáng điệu của các hàm cơ bản. Hiểu ý nghĩa hình học cũng như ý nghĩa thực tiễn của đạo hàm và vi phân. Thời lượng Bài này được trình bày trong khoảng 4 tiết bài tập và 3 tiết lý thuyết. Bạn nên dành mỗi tuần khoảng 120 phút trong vòng hai tuần để học bài này. Nội dung Ôn tập củng cố khái niệm đạo hàm vi phân của hàm số một biến số. Các tính chất ứng dụng của lớp hàm khả vi trong toán học. Hướng dẫn học Bạn cần đọc kỹ các ví dụ để nắm vững lý thuyết. Bạn nên học thuộc một số khái niệm cơ bản bảng đạo hàm của các hàm số sơ cấp và các định lý Cauchy Lagrange Fermat . 23 TOPICA C1I HIIU law IA ÕUẬỄ If Bài 2 Đạo hàm và vi phân . Đạo hàm . Khái niệm đạo hàm Cho hàm số f x xác định trong khoảng a b và x0 e a b . Nếu tồn tại giới hạn của . Ấ f x -f x0 tỉ số - 0 khi x x0 thì giới hạn ấy được gọi là đạo hàm của hàm số x - x0 y f x tại điểm x0 kí hiệu là f x0 hay y x0 . Đặt Ax x - x0 Ay y - y0 ta được y x0 lim 4 . Ax Ax Nếu hàm số f x có đạo hàm tại x0 thì f x liên tục tại x0. Về mặt hình học đạo hàm của hàm số f x tại điểm x0 biểu diễn hệ số góc của đường tiếp tuyến của đồ thị hàm số y f x tại điểm M0 x0 f x0 . Phương trình tiếp tuyến tại điểm x0 là y f x0 x - x0 f x0 . y Hình . Các phép toán về đạo hàm Nếu các hàm số u x v x có các đạo hàm tại xthì u x v x cũng có đạo hàm tại x và u x v x u x v x . u x v x cũng có đạo hàm tại x và u x .v x u x .v x u x .v x . u x v x cũng có đạo hàm tại x trừ khi v x 0 và I u x Ỵ_ u x .v x - u x .v x I vx J v2cx . Nếu hàm số u g x có đạo hàm theo x hàm số y f u có đạo hàm theo u thì hàm số hợp y f g x có đạo hàm theo x và y x y u .u x . 24 TOPICA C1I HIIU law IA ÕUẬỄ If Bài 2 Đạo hàm và vi phân . Bảng đạo hàm của các hàm số sơ cấp cơ bản Ta có

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.