TAILIEUCHUNG - Báo cáo khoa học: "Ensemble Methods for Unsupervised WSD"

Combination methods are an effective way of improving system performance. This paper examines the benefits of system combination for unsupervised WSD. We investigate several voting- and arbiterbased combination strategies over a diverse pool of unsupervised WSD systems. Our combination methods rely on predominant senses which are derived automatically from raw text. Experiments using the SemCor and Senseval-3 data sets demonstrate that our ensembles yield significantly better results when compared with state-of-the-art. . | Ensemble Methods for Unsupervised WSD Samuel Brody School of Informatics University of Edinburgh Roberto Navigli Dipartimento di Informatica Universita di Roma La Sapienza navigli@ Mirella Lapata School of Informatics University of Edinburgh mlap@ Abstract Combination methods are an effective way of improving system performance. This paper examines the benefits of system combination for unsupervised WSD. We investigate several voting- and arbiterbased combination strategies over a diverse pool of unsupervised WSD systems. Our combination methods rely on predominant senses which are derived automatically from raw text. Experiments using the SemCor and Senseval-3 data sets demonstrate that our ensembles yield significantly better results when compared with state-of-the-art. 1 Introduction Word sense disambiguation WSD the task of identifying the intended meanings senses of words in context holds promise for many NLP applications requiring broad-coverage language understanding. Examples include summarization question answering and text simplification. Recent studies have also shown that WSD can benefit machine translation Vickrey et al. 2005 and information retrieval Stokoe 2005 . Given the potential of WSD for many NLP tasks much work has focused on the computational treatment of sense ambiguity primarily using data-driven methods. Most accurate WSD systems to date are supervised and rely on the availability of training data . corpus occurrences of ambiguous words marked up with labels indicating the appropriate sense given the context see Mihalcea and Edmonds 2004 and the references therein . A classifier automatically learns disambiguation cues from these hand-labeled examples. Although supervised methods typically achieve better performance than unsupervised alternatives their applicability is limited to those words for which sense labeled data exists and their accuracy is strongly correlated with the amount of .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.