TAILIEUCHUNG - Bài giảng Khai mở dữ liệu: Phương pháp tập hợp mô hình (Ensemble-based methods)

Bài giảng Khai mở dữ liệu: Phương pháp tập hợp mô hình (Ensemble-based methods) của Đỗ Thanh Nghị trình bày về Ensemble-based; Bagging, Random forests, Boosting; kết luận và hướng phát triển. | Khoa Công Nghệ Thông Tin Trường Đại Học Cần Thơ Phương pháp tập hợp mô hình Ensemble-based methods Đỗ Thanh Nghị dtnghi@ Cần Thơ 02-12-2008 Nội dung Giới thiệu về Ensemble-based Bagging, Random forests, Boosting Kết luận và hướng phát triển 2 Nội dung Giới thiệu về Ensemble-based Bagging, Random forests, Boosting Kết luận và hướng phát triển 3 Giới thiệu về Ensemble-based Bagging, Random forests, Boosting kết luận và hướng phát triển Ensemble-based phương pháp ensemble-based xây dựng tập hợp các mô hình cơ sở dựa trên tập học kết hợp các mô hình khi phân loại cho độ chính xác cao dựa trên cơ sở bias/variance bagging, random forests, boosting áp dụng cho nhiều giải thuật cơ sở khác nhau như cây quyết định, SVM, naive Bayes, etc. giải quyết các vấn đề về phân loại, hồi quy, gom nhóm, etc. cho kết quả tốt, tuy nhiên không thể dịch được kết quả sinh ra được ứng dụng thành công trong hầu hết các lãnh vực tìm kiếm thông tin, nhận dạng, phân tích dữ liệu, etc. 4 Giới thiệu về Ensemble-based Bagging, Random forests, Boosting kết luận và hướng phát triển Ensemble-based hiệu quả giải thuật học bias : thành phần lỗi độc lập với mẫu dữ liệu học variance : thành phần lỗi do biến động liên quan đến sự ngẫu nhiên của tập .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.