TAILIEUCHUNG - The Elliptic Curve Digital Signature Algorithm (ECDSA)

The Digital Signature Algorithm (DSA) was specified in a . Government Federal Information Processing Standard (FIPS) called the Digital Signature Standard (DSS [70]). | certicom The Elliptic Curve Digital Signature Algorithm ECDSA Don Johnson1 and Alfred Menezes1 2 and Scott Vanstone1 2 1Certicom Research Canada 2Dept. of Combinatorics Optimization University of Waterloo Canada Emails djohnson amenezes svanstone @ Abstract The Elliptic Curve Digital Signature Algorithm ECDSA is the elliptic curve analogue of the Digital Signature Algorithm DSA . It was accepted in 1999 as an ANSI standard and was accepted in 2000 as IEEE and NIST standards. It was also accepted in 1998 as an ISO standard and is under consideration for inclusion in some other ISO standards. Unlike the ordinary discrete logarithm problem and the integer factorization problem no subexponential-time algorithm is known for the elliptic curve discrete logarithm problem. For this reason the strength-per-key-bit is substantially greater in an algorithm that uses elliptic curves. This paper describes the ANSI ECDSA and discusses related security implementation and interoperability issues. 1 Introduction The Digital Signature Algorithm DSA was specified in a . Government Federal Information Processing Standard FIPS called the Digital Signature Standard DSS 70 . Its security is based on the computational intractability of the discrete logarithm problem DLP in prime-order subgroups of z . Elliptic curve cryptosystems ECC were invented by Neal Koblitz 49 and Victor Miller 67 in 1985. They can be viewed as elliptic curve analogues of the older discrete logarithm DL cryptosystems in which the subgroup of z is replaced by the group of points on an elliptic curve over a finite field. The mathematical basis for the security of elliptic curve cryptosystems is the computational intractability of the elliptic curve discrete logarithm problem ECDLP . Since the ECDLP appears to be significantly harder than the DLP the strength-per-key-bit is substantially greater in elliptic curve systems than in conventional discrete logarithm systems. Thus smaller parameters can .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.