TAILIEUCHUNG - Giáo trình Cơ sở di truyền

Tham khảo sách 'giáo trình cơ sở di truyền', khoa học tự nhiên, công nghệ sinh học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Chương 2 PHÂN TÍCH TÍNH ĐA DẠNG VỀ DI TRUYỀN Phương pháp đo lường khoảng cách của các nhóm trên cơ sở nhiều tính trạng khác nhau được đề xuất Mahalanobis 1928 . Phương pháp nầy còn được gọi là hiệu số bình phương D2 - Mahalonobis . Các bước phân tích bao gồm i Thu thập số liệu ii Trắc nghiệm mức độ ý nghĩa iii Chuyển đổi các giá trị iv Tính hiệu số D2 v Trắc nghiệm mức độ ý nghĩa của D2 với phép thử Chi bình phương vi Mức độ đóng góp của các tính trạng vào sự phân nhóm. vii Xếp nhóm các cluster di truyền - Phương pháp Tocher - Canonical graph. Chương trình phân tích đã có trong cá mô hình thống kê sinh học Trước tiên chúng ta thiết lập một ma trận có chứa các giá trị phương sai variance và hợp sai covariance giữa các tính trạng có quan hệ với nhau để tìm ra các phương trình biến đổi của các biến số có tương quan. Kế đến tính D2 từng cặp giá trị và phân nhóm di truyền. Tính khoảng cách di truyền trong từng nhóm và giữa các nhóm. Các genotypes ở cùng một nhóm ít khác biệt hơn kiểu gen ở nhóm khác. Hệ số D ở trong nhóm nhỏ hơn rất nhiều so với hệ số D giữa các nhóm. Có ba đặc điểm quan trọng trong khi chọn lựa các genotypes là - Chọn nhóm có genotype làm bố mẹ. - Chọn các genotypes ở trong nhóm có khoảng cách di tryuền với các nhóm khác càng xa càng tốt. - Chú ý các tính trạng có mức độ đóng góp cao nhất về độ khác biệt về di truyền. Phải tiếp tục thực thiện việc lai thử nghiệm mới có kết luận cụ thể về ưu thế lai giữa hai nhóm có khoảng cách xa cũng như sự phân ly của các dòng con lai. 2-1. PHƯƠNG SAI HỢP SAI variance covariance x 2 Sx2 - ----- n Var x -------------------------- phương sai n - 1 Sxy - SxSy n Cov xy ------------------ hợp sai n -1 Phương pháp metroglyph và tính chỉ số điểm đánh giá đã được Anderson đề nghị từ năm 1957. Sau đó rất nhiều tác giả khác đã phát triển phương pháp này như Ramanujam và Kumar 1964 Mukherjee và ctv. 1971 Venketrao và ctv. 1973 2-2. HIỆU SỐ D2 pD2 b1d1 b2d2 b3d3 . bpdp pD2 Wij mean xi1 - mean xi2 mean xj 1 - mean xj2 Trong đó .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.