TAILIEUCHUNG - ON THE SOLVABILITY OF INITIAL-VALUE PROBLEMS FOR NONLINEAR IMPLICIT DIFFERENCE EQUATIONS PHAM KY ANH

ON THE SOLVABILITY OF INITIAL-VALUE PROBLEMS FOR NONLINEAR IMPLICIT DIFFERENCE EQUATIONS PHAM KY ANH AND HA THI NGOC YEN Received 18 February 2004 Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differentialalgebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems. 1. Introduction Implicit difference equations (IDEs) arise in various applications, such as the Leontief dynamic model of a multisector economy, the Leslie population growth model, and so forth. On. | ON THE SOLVABILITY OF INITIAL-VALUE PROBLEMS FOR NONLINEAR IMPLICIT DIFFERENCE EQUATIONS PHAM KY ANH AND HA THI NGOC YEN Received 18 February 2004 Our aim is twofold. First we propose a natural definition of index for linear nonau-tonomous implicit difference equations which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems. 1. Introduction Implicit difference equations IDEs arise in various applications such as the Leontief dynamic model of a multisector economy the Leslie population growth model and so forth. On the other hand IDEs may be regarded as discrete analogues of differential-algebraic equations DAEs which have already attracted much attention of researchers. Recently 1 3 a notion of index 1 linear implicit difference equations LIDEs has been introduced and the solvability of initial-value problems IVPs as well as multipoint boundary-value problems MBVPs for index 1 LIDEs has been studied. In this paper we propose a natural definition of index for LIDEs so that it can be extended to a class of nonlinear IDEs. The paper is organized as follows. Section 2 is concerned with index 1 LIDEs and their reduction to ordinary difference equations. In Section 3 we study the index concept and the solvability of IVPs for nonlinear IDEs. The result of this paper can be considered as a discrete version of the corresponding result of 4 . 2. Index 1 linear implicit difference equations Let Q be an arbitrary projection onto a given subspace N of dimension m - r 1 r m - 1 in Rm. Further let v ir and vj im 1 be any bases of KerQ and N respectively. Denote by V v1 . vm a column matrix and denote Q diag Or Im-r where Or and Im-r stand for r X r zero matrix and m - r X m - r identity matrix respectively. Then V is nonsingular Q VQV-1 and this decomposition depends on the choice of the bases vịim that is on V. Now

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.