TAILIEUCHUNG - Đề tài "The Lyapunov exponents of generic volume-preserving and symplectic maps "

We show that the integrated Lyapunov exponents of C 1 volume-preserving diffeomorphisms are simultaneously continuous at a given diffeomorphism only if the corresponding Oseledets splitting is trivial (all Lyapunov exponents are equal to zero) or else dominated (uniform hyperbolicity in the projective bundle) almost everywhere. We deduce a sharp dichotomy for generic volume-preserving diffeomorphisms on any compact manifold: | Annals of Mathematics The Lyapunov exponents of generic volume-preserving and symplectic maps By Jairo Bochi and Marcelo Viana Annals of Mathematics 161 2005 1423 1485 The Lyapunov exponents of generic volume-preserving and symplectic maps By Jairo Bochi and Marcelo Viana To Jacob Palis on his 60th birthday with friendship and admiration. Abstract We show that the integrated Lyapunov exponents of C1 volume-preserving diffeomorphisms are simultaneously continuous at a given diffeomorphism only if the corresponding Oseledets splitting is trivial all Lyapunov exponents are equal to zero or else dominated uniform hyperbolicity in the projective bundle almost everywhere. We deduce a sharp dichotomy for generic volume-preserving diffeomor-phisms on any compact manifold almost every orbit either is projectively hyperbolic or has all Lyapunov exponents equal to zero. Similarly for a residual subset of all C1 symplectic diffeomorphisms on any compact manifold either the diffeomorphism is Anosov or almost every point has zero as a Lyapunov exponent with multiplicity at least 2. Finally given any set S c GL d satisfying an accessibility condition for a residual subset of all continuous S-valued cocycles over any measure-preserving homeomorphism of a compact space the Oseledets splitting is either dominated or trivial. The condition on S is satisfied for most common matrix groups and also for matrices that arise from discrete Schrodinger operators. 1. Introduction Lyapunov exponents describe the asymptotic evolution of a linear cocycle over a transformation positive or negative exponents correspond to exponential growth or decay of the norm respectively whereas vanishing exponents mean lack of exponential behavior. Partially supported by CNPq Profix and Faperj Brazil. . thanks the Royal Institute of Technology for its hospitality. . is grateful for the hospitality of College de France Universite de Paris-Orsay and Institut de Mathematiques de Jussieu. 1424 JAIRO BOCHI .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.