TAILIEUCHUNG - On a form of lyapunov exponents (I: Establishment of the form)

Another form of Lyapunov exponents associated with certain motion that given by () is proposed. It is expressed through the variation of the disturbance direction (not through that of the disturbance norm). | Vietnam Journal of Mechanics , VAST Vol. 26 , 2005 , No. 4 (208 - 214) ON A FORM OF LYAPUNOV EXPONENTS (I: ESTABLISHMENT OF THE FORM) NGUYEN VAN DIN H Institute of Mechanics ABSTRACT. Another form of Lyapunov exponents associated with certain motion that given by () is proposed. It is expressed through the variation of the disturbance direction (not through that of the disturbance norm). 1 Introduction It is known that Lyapunov exponents associated with certain motion X(t) (equilibrium state, periodic and quasi periodic or chaotic motions) are real numbers characterizing t he behaviour of nearby motions x(t) and provide informations on the stability character of the motion under consideration. In [1] , they are defined as asymptotic quantities . 1 >(yo) = hm - ln(lly(t)ll/llY(O)ll), t->oo () t where I I denotes a vector norm, y(t) = x(t) - X(t) is the disturbance i. e. the deviation from the reference motion X(t) to its nearby ones x(t), y 0 = y(O) is the initial disturbance, ln stands for the natural logarithm. In the present paper , an attention is foccussed on another form of Lyapunov exponents, that is f t >(uo) = lim ~ t->oo t () u'(r)A(r)u(r)dr, 0 where u(t) = y(t) /i ly (t) il is the unit vector directed to t he disturbance, uo = u(O) is t he initial unit vector, A(t) is the Jacobian matrix of t he equation of variation, prime denotes the transposes operator. In this part I, the form () is established; the part II is devoted to t he verification and illustration of the results obtained. 2 The equation of variation and the expression of the disturbance Consider a system governed by the differential equation x(t) = F(x, t) or Xj(t) = Fj(X1, X2 , . ' Xn , t) , 208 (j = 1, 2, . ' n) , (2 .1) where x (x1, x2, . , Xn) is t he column vector in an n-dimensional Euclidean space with norm l xll = + + · · · + overdot denotes differentiation with respect to t ime t, F(x , t) is a column vector function (with necessary

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.