TAILIEUCHUNG - Đề tài " The resolution of the Nirenberg-Treves conjecture "

We give a proof of the Nirenberg-Treves conjecture: that local solvability of principal-type pseudo-differential operators is equivalent to condition (Ψ). This condition rules out sign changes from − to + of the imaginary part of the principal symbol along the oriented bicharacteristics of the real part. We obtain local solvability by proving a localizable a priori estimate for the adjoint operator with a loss of two derivatives (compared with the elliptic case). The proof involves a new metric in the Weyl (or Beals-Fefferman) calculus which makes it possible to reduce to the case when the gradient of the imaginary. | Annals of Mathematics The resolution of the Nirenberg-Treves conjecture By Nils Dencker Annals of Mathematics 163 2006 405 444 The resolution of the Nirenberg-Treves conjecture By Nils Dencker Abstract We give a proof of the Nirenberg-Treves conjecture that local solvability of principal-type pseudo-differential operators is equivalent to condition T . This condition rules out sign changes from to of the imaginary part of the principal symbol along the oriented bicharacteristics of the real part. We obtain local solvability by proving a localizable a priori estimate for the adjoint operator with a loss of two derivatives compared with the elliptic case . The proof involves a new metric in the Weyl or Beals-Fefferman calculus which makes it possible to reduce to the case when the gradient of the imaginary part is nonvanishing so that the zeroes form a smooth submanifold. The estimate uses a new type of weight which measures the changes of the distance to the zeroes of the imaginary part along the bicharacteristics of the real part between the minima of the curvature of the zeroes. By using condition T and the weight we can construct a multiplier giving the estimate. 1. Introduction In this paper we shall study the question of local solvability of a classical pseudo-differential operator P G T M on a C 1 manifold M. Thus we assume that the symbol of P is an asymptotic sum of homogeneous terms and that p ơ P is the homogeneous principal symbol of P. We shall also assume that P is of principal type which means that the Hamilton vector field Hp and the radial vector field are linearly independent when p 0 thus dp 0 when p 0. Local solvability of P at a compact set K c M means that the equation Pu v has a local solution u G D M in a neighborhood of K for any v G C M in a set of finite codimension. We can also define microlocal solvability at any compactly based cone K c T M see 9 Def. . Hans Lewy s famous counterexample 19 from 1957 showed that not all smooth

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.