TAILIEUCHUNG - Effective Computational Geometry for Curves & Surfaces - Boissonnat & Teillaud Part 4

Tham khảo tài liệu 'effective computational geometry for curves & surfaces - boissonnat & teillaud part 4', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 1 Arrangements 65 a b c Fig. . A spherical arrangement a its full trapezoidal decomposition b and its partial trapezoidal decomposition c for the case of a single robot with a limited field of view of ip radians called a -searcher based on the arrangement of curves that represent the visibility constraints induced by the environment and the searchers field of view. Each obstacle edge defines a critical curve that is the locus of all points that see it at an angle namely a pair of circular arcs. The algorithm for a single robot can also be generalized for multiple searches albeit at a loss of completeness . See 179 for further details and on-line examples. Shortest Path with Clearance Wein et al. 336 devise a new structure for finding the shortest path for a point robot moving in the plane among polygonal obstacles between a source and a goal configuration while trying to guarantee that the clearance between the robot and the obstacles is at least c. The main idea is to inflate each obstacle by a radius c see also Sect. and compute the visibility diagram of the dilated obstacles. A visibility edge is a bitangent to rounded corners of the dilated obstacle. When one encounters a region where it is impossible to guarantee a distance of at least c from the obstacles which is characterized by an overlap between the dilated obstacles the Voronoi diagram of the original obstacles is computed and combined into the visibility diagram representing a path with maximal clearance in this region. The combined diagram therefore contains line segments circular arcs and parabolic It is constructed using the conic-arc traits of Cgal s arrangement package. 27The Voronoi diagram of polygons is a collection of line segments and parabolic arcs a parabolic arc is the locus of points equidistant from a polygon vertex and an edge of another polygon. 66 E. Fogel D. Halperin L. Kettner M. Teillaud R. Wein N. Wolpert Further Reading and Open problems In this chapter we .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.