TAILIEUCHUNG - Báo cáo toán học: " Sign-graded posets, unimodality of W -polynomials and the Charney-Davis Conjecture"

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: Sign-graded posets, unimodality of W -polynomials and the Charney-Davis Conjecture. | Sign-graded posets unimodality of W-polynomials and the Charney-Davis Conjecture Petter Brandén Chalmers University of Technology and Goteborg University S-412 96 Goteborg Sweden branden@ Submitted Jul 6 2004 Accepted Nov 6 2004 Published Nov 22 2004 Mathematics Subject Classifications 06A07 05E99 13F55 Dedicated to Richard Stanley on the occasion of his 60th birthday Abstract We generalize the notion of graded posets to what we call sign-graded labeled posets. We prove that the W-polynomial of a sign-graded poset is symmetric and unimodal. This extends a recent result of Reiner and Welker who proved it for graded posets by associating a simplicial polytopal sphere to each graded poset. By proving that the W-polynomials of sign-graded posets has the right sign at 1 we are able to prove the Charney-Davis Conjecture for these spheres whenever they are flag . 1 Introduction and preliminaries Recently Reiner and Welker 10 proved that the W-polynomial of a graded poset partially ordered set P has unimodal coefficients. They proved this by associating to P a simplicial polytopal sphere Aeq P whose h-polynomial is the W-polynomial of P and invoking the -theorem for simplicial polytopes see 15 16 . Whenever this sphere is flag . its minimal non-faces all have cardinality two they noted that the Neggers-Stanley Conjecture implies the Charney-Davis Conjecture for Aeq P . In this paper we give a different proof of the unimodality of W-polynomials of graded posets and we also prove the Charney-Davis Conjecture for Aeq P whenever it is flag . We prove it by studying a family of labeled posets which we call sign-graded posets of which the class of graded naturally labeled posets is a sub-class. Part of this work was financed by the EC s IHRP Programme within the Research Training Network Algebraic Combinatorics in Europe grant HPRN-CT-2001-00272 while the author was at Universitá di Roma Tor Vergata Rome Italy. THE ELECTRONIC JOURNAL OF COMBINATORICS 11 2 2004

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.