TAILIEUCHUNG - Báo cáo khoa học:Voltage Graphs, Group Presentations and Cages

The cage problem asks for the construction of regular graphs with specified degree and girth. Reviewing terminology, we recall that the girth of a graph is the length of a shortest cycle, that a (k, g)-graph is regular graph of degree k and girth g, and that a (k, g)-cage is a (k, g)-graph of minimum possible order. Define f(k, g) to be this minimum. We focus on trivalent (or cubic) cages. It is well known that. | Voltage Graphs Group Presentations and Cages Geoffrey Exoo Department of Mathematics and Computer Science Indiana State University Terre Haute IN 47809 g-exoo@ Submitted Dec 2 2003 Accepted Jan 29 2004 Published Feb 14 2004 Abstract We construct smallest known trivalent graphs for girths 16 and 18. One construction uses voltage graphs and the other coset enumeration techniques for group presentations. AMS Subject Classifications 05C25 05C35 1 Introduction The cage problem asks for the construction of regular graphs with specified degree and girth. Reviewing terminology we recall that the girth of a graph is the length of a shortest cycle that a k g -graph is regular graph of degree k and girth g and that a k g -cage is a k g -graph of minimum possible order. Define f k g to be this minimum. We focus on trivalent or cubic cages. It is well known that 29 2 1 if g is even 3 X 2 g-1 2 2 if g is odd This bound the Moore bound is achieved only for girths 5 6 8 and 12 1 4 . The problem of finding cages has been chronicled by Biggs 3 and others. In this note we give two new constructions of cage candidates using different methods. f 3 g I THE ELECTRONIC JOURNAL OF COMBINATORICS 11 2004 N2 1 2 A Girth 16 Lift of the Petersen Graph The first and simplest of the constructions begins with the Petersen graph denoted P the smallest 3-regular graph of girth 5. We investigate graphs that can be constructed as lifts of the P and discover a new graph the smallest known trivalent graph of girth 16. Note that lift have been previously used with reference to the closely related degreediameter problem 9 . The graph has 960 vertices improving the old bound of 992 given in 2 . Our method is best described using voltage graph terminology first introduced by Gross 7 which we now review. If G is a finite graph denote its vertex and edge sets by V G and E G . Also let D G denote the set of arcs on G each edge e E E G is represented exactly twice in D G . with each of the two .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.