TAILIEUCHUNG - Báo cáo toán học: " Bijective proofs of the hook formulas for the number of standard Young tableaux, ordinary and shifted"

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: Bijective proofs of the hook formulas for the number of standard Young tableaux, ordinary and shifted. | Bijective proofs of the hook formulas for the number of standard Young tableaux ordinary and shifted C. Krattenthaler Institut fur Mathematik der Universitat Wien Strudlhofgasse 4 A-1090 Wien Austria. Submitted February 20 1995 Accepted July 9 1995 Abstract. Bijective proofs of the hook formulas for the number of ordinary standard Young tableaux and for the number of shifted standard Young tableaux are given. They are formulated in a uniform manner and in fact prove -analogues of the ordinary and shifted hook formulas. The proofs proceed by combining the ordinary respectively shifted Hillman-Grassl algorithm and Stanley s P w -partition theorem with the involution principle of Garsia and Milne. 1. Introduction. A few years ago there had been a lot of interest in finding a bijective proof of Frame Robinson and Thrall s 1 hook formula for the number of standard Young tableaux of a given shape. This resulted in the discovery of three different such proofs 2 10 14 none of them is considered to be really satisfactory. Closest to being satisfactory is probably the proof by Franzblau and Zeilberger 2 . However while the description of their algorithm is fairly simple it is rather difficult to show that it really works. Also it does not portray the nice row-column symmetry of the hooks. Remmel s proof 10 is the most complicated. It uses the involution principle of Garsia and Milne 3 . However Remmel bases his proof on bijectivization of recurrence relations which is not the most direct route to attack the problem. Finally Zeilberger s proof 14 translating the beautiful probabilistic proof 6 by Greene Nijenhuis and Wilf into a bijection actually sets up a bijection between larger sets than one desires. So it is still considered to be the case that the best proof of the hook formula is to use the Hillman-Grassl algorithm 7 and Stanley s P w -partition theorem 12 and then to apply a limit argument this is the non-bijective part . In view of this it is somehow surprising that

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.