TAILIEUCHUNG - LUYỆN THI ĐẠI HỌC MÔN TO ÁN - ĐỀ THI THỬ SỐ 9
Tham khảo tài liệu luyện thi đại học môn to án - đề thi thử số 9 , tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | THI THỬ ĐẠI HỌC 2011 MÔN TOÁN Thời gian làm bài: 180 phút A. PHẦN DÀNH CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số. b) Biện luận theo m số nghiệm của phương trình Câu II (2 điểm) a) Tìm m để phương trình có nghiệm trên b) Giải phương trình Câu III (2 điểm) a) Tìm giới hạn b) Chứng minh rằng Câu IV (1 điểm) Cho a, b, c là các số thực thoả mãn Tìm giá trị nhỏ nhất của biểu thức B. PHẦN DÀNH CHO TỪNG LOẠI THÍ SINH Dành cho thí sinh thi theo chương trình chuẩn Câu Va (2 điểm) a) Trong hệ tọa độ Oxy, cho hai đường tròn có phương trình và Lập phương trình tiếp tuyến chung của và b) Cho lăng trụ đứng ’B’C’ có tất cả các cạnh đều bằng a. Gọi M là trung điểm của AA’. Tính thể tích của khối tứ diện BMB’C’ theo a và chứng minh rằng BM vuông góc với B’C. Câu VIa (1 điểm) Cho điểm và đường thẳng Viết phương trình mặt phẳng chứa sao cho khoảng cách từ đến lớn nhất. Dành cho thí sinh thi theo chương trình nâng cao Câu Vb (2 điểm) a) Trong hệ tọa độ Oxy, hãy viết phương trình hyperbol (H) dạng chính tắc biết rằng (H) tiếp xúc với đường thẳng tại điểm A có hoành độ bằng 4. b) Cho tứ diện OABC có và Tính thể tích tứ diện OABC. Câu VIb (1 điểm) Cho mặt phẳng và các đường thẳng Tìm điểm M thuộc d1, N thuộc d2 sao cho MN song song với (P) và đường thẳng MN cách (P) một khoảng bằng 2. ĐÁP ÁN Câu I 2 điểm a) Tập xác định: Hàm số có tập xác định Giới hạn: 0,25 Đạo hàm: Hàm số nghịch biến trên các khoảng và Hàm số không có cực trị. Bảng biến thiên: 0,25 Đồ thị hàm số có tiệm cận đứng tiệm cận ngang Giao của hai tiệm cận là tâm đối xứng. 0,25 Đồ thị: Học sinh tự vẽ hình 0,25 b) Học sinh lập luận để suy từ đồ thị (C) sang đồ thị Học sinh tự vẽ hình 0,5 Số nghiệm của bằng số giao điểm của đồ thị và 0,25 Suy ra đáp số phương trình có 2 nghiệm phương trình có 1 nghiệm phương trình vô nghiệm 0,25 Câu II 2 điểm a) Ta có và 0,25 Do đó . Đặt . Ta có Suy ra 0,25 Ta có bảng biến thiên 0,25 Từ đó phương trình đã cho có nghiệm trên 0,25 b) Giải phương trình Điều kiện: 0,25 0,25 Trường hợp 1: 0,25 Trường hợp 1: Vậy tập nghiệm của (2) là 0,25 Câu III a) Tìm Ta có 0,25 Xét 0,25 Xét 0,25 Vậy 0,25 b) Chứng minh rằng Ta có 0,5 Mặt khác Vậy 0,5 Câu IV Cho a, b, c thoả Tìm GTNN của Đặt 0,25 Theo cô – si có . Tương tự 0,5 Vậy Dấu bằng xảy ra khi 0,25 Câu Va Học sinh tự vẽ hình a) 0,25 Gọi tiếp tuyến chung của là là tiếp tuyến chung của Từ (1) và (2) suy ra hoặc 0,25 Trường hợp 1: . Chọn Trường hợp 2: . Thay vào (1) được 0,5 b) Gọi H là trung điểm của BC 0,25 0,25 Gọi I là tâm hình vuông BCC’B’ (Học sinh tự vẽ hình) Ta có 0,5 Câu VIa (Học sinh tự vẽ hình) Gọi K là hình chiếu của A trên d cố định; Gọi là mặt phẳng bất kỳ chứa d và H là hình chiếu của A trên . 0,25 Trong tam giác vuông AHK ta có Vậy là mặt phẳng qua K và vuông góc với AK. 0,25 Gọi là mặt phẳng qua A và vuông góc với d 0,25 là mặt phẳng qua K và vuông góc với AK 0,25 Câu Vb a) Gọi (H) tiếp xúc với 0,25 0,25 Từ (1) và (2) suy ra 0,5 b) (Học sinh tự vẽ hình) Lấy B’ trên OB; C’ trên OC sao cho 0,25 Lấy M là trung điểm của B’C’ Kẻ 0,25 Ta có 0,25 Vậy 0,25 Câu VIb Gọi 0,25 Trường hợp 1: 0,25 Trường hợp 2: 0,25 Kết luận 0,25 Môn Toán
đang nạp các trang xem trước