TAILIEUCHUNG - What Should We Do About Missing Data?

Fox et al. (1998) carried out a logistic regression analysis with discrete covariates in which one of the covariates was missing for a substantial percentage of respondents. The missing data problem was addressed using the “approximate Bayesian bootstrap.” We return to this missing data problem to provide a form of case study. Using the Fox et al. (1998) data for expository purposes we carry out a comparative analysis of eight of the most commonly used techniques for dealing with missing data. We then report on two sets of simulations based on the original data | What Should We Do About Missing Data A Case Study Using Logistic Regression with Missing Data on a Single Covariate Christopher Paul William M. Mason Daniel McCaffrey Sarah A. Fox CCPR-028-03 October 2003 California Center for Population Research On-Line Working Paper Series What Should We Do About Missing Data A Case Study Using Logistic Regression with Missing Data on a Single Covariate Christopher Paula William M. Masonb Daniel McCaffreyc and Sarah A. Foxd Revision date 24 October 2003 File name a RAND cpaul@ b Department of Sociology and California Center for Population Research University of California-Los Angeles masonwm@ c RAND Daniel_McCaffrey@ d Department of Medicine Division of General Internal Medicine and Health Services Research University of California-Los Angeles sfox@ The research reported here was partially supported by National Institutes of Health National Cancer Institute R01 CA65879 SAF . We thank Nicholas Wolfinger Naihua Duan and John Adams for comments on an earlier draft. What should we do about missing data ABSTRACT Fox et al. 1998 carried out a logistic regression analysis with discrete covariates in which one of the covariates was missing for a substantial percentage of respondents. The missing data problem was addressed using the approximate Bayesian bootstrap. We return to this missing data problem to provide a form of case study. Using the Fox et al. 1998 data for expository purposes we carry out a comparative analysis of eight of the most commonly used techniques for dealing with missing data. We then report on two sets of simulations based on the original data. These suggest for patterns of missingness we consider realistic that case deletion and weighted case deletion are inferior techniques and that common simple alternatives are better. In addition the simulations do not affirm the theoretical superiority of Bayesian Multiple Imputation. The apparent explanation .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.