TAILIEUCHUNG - Stimulated Emission and Optical Gain in Semiconductors

This chapter presents the basic theory and characteristics of stimulated emission and optical amplification gain in semiconductors. The former is the mostimportant principlethat enablessemiconductorlaserstobeimplemented, and the latter is the most important parameter for analysis of the laser performances. First, stimulated emission in semiconductors is explained, and then quantum theory analysis and statistic analysis using the density matrix of the optical amplification gain are given. Stimulated emission and optical gain in semiconductor quantum well structures will be presented in the next chapter | 3 Stimulated Emission and Optical Gain in Semiconductors This chapter presents the basic theory and characteristics of stimulated emission and optical amplification gain in semiconductors. The former is the most important principle that enables semiconductor lasers to be implemented and the latter is the most important parameter for analysis of the laser performances. First stimulated emission in semiconductors is explained and then quantum theory analysis and statistic analysis using the density matrix of the optical amplification gain are given. Stimulated emission and optical gain in semiconductor quantum well structures will be presented in the next chapter. BAND STRUCTURE OF SEMICONDUCTORS AND STIMULATED EMISSION Band Structure of Direct-Transition Bandgap Semiconductors Semiconductor lasers utilize the interband optical transitions of carriers in a semiconductor having a direct-transition bandgap. As is well known in the electron theory of solids 1 the wave function of an electron of wave vector k momentum hk in an ideal semiconductor crystal can be written as a Bloch function hA r exp ik r uk r where uk r is a periodic function with the periodicity of the crystal lattice and uk r is normalized in a unit volume. The electron states form a band structure consisting of continuous energy levels in the band. Figure shows the band structure of GaAs 2 a representative semiconductor laser Copyright 2004 Marcel Dekker Inc. K iii ----------4-------- 100 Electron wave number Figure Band structure of the III-V semiconductor GaAs having a bandgap of direct transition type 2 . material. The figure shows the electron energy E dependent on k within the first Brillouin zone the dependences on k along the 111 and 100 directions with good symmetry in the k space are shown in the left and right halves respectively. Crystals of III-V compound semiconductors such as GaAs are of the zinc blende structure and their valence and conduction bands originate from .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.