TAILIEUCHUNG - The Quantum Mechanics Solver 20

The Quantum Mechanics Solver 20 uniquely illustrates the application of quantum mechanical concepts to various fields of modern physics. It aims at encouraging the reader to apply quantum mechanics to research problems in fields such as molecular physics, condensed matter physics or laser physics. Advanced undergraduates and graduate students will find a rich and challenging source of material for further exploration. This book consists of a series of problems concerning present-day experimental or theoretical questions on quantum mechanics | 19 Properties of a Bose-Einstein Condensate By cooling down a collection of integer spin atoms to a temperature of less than one micro-Kelvin one can observe the phenomenon of Bose-Einstein condensation. This results in a situation where a large fraction of the atoms are in the same quantum state. Consequently the system possesses remarkable coherence properties. We study here the ground state of such an N particle system hereafter called a condensate. We will show that the nature of the system depends crucially on whether the two-body interactions between the atoms are attractive or repulsive. Particle in a Harmonic Trap We consider a particle of mass m placed in a harmonic potential with a frequency w 2n. The Hamiltonian of the system is W 1 H -1 mw2r2 2m 2 where r r y z and p px py pz are respectively the position and momentum operators of the particle. We set ao y h m . . Recall the energy levels of this system and its ground state wave function o r . . We wish to obtain an upper bound on this ground state energy by the variational method. We use a Gaussian trial wave function - r 1 3 4 exp -r2 2a2 with a 0 . a2n The values of a relevant set of useful integrals are given below. By varying a find an upper bound on the ground state energy. Compare the bound with the exact value and comment on the result. 194 19 Properties of a Bose-Einstein Condensate Formulas y ÿa r 2 dx dy dz 1 pH r 2 dx dy dz I ty r 4 dxdy dz -2- dx dy dz 7 2a2 d a r dx Interactions Between Two Confined Particles We now consider two particles of equal masses m both placed in the same harmonic potential. We denote the position and momentum operators of the two particles by ri r2 and p1 p2. . In the absence of interactions between the particles the Hamiltonian of the system is A2 A2 1 1 H -- ---1 m r2 mw2r2 . 2m 2m 2 11 2 2 a What are the energy levels of this Hamiltonian b What is the ground state wave function o ri r2 . We now suppose that the two .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.