TAILIEUCHUNG - Statistical Description of Data part 6

Norusis, . 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSSX Advanced Statistics Guide (New York: McGraw-Hill). Fano, . 1961, Transmission of Information (New York: Wiley and MIT Press), Chapter 2 | 636 Chapter 14. Statistical Description of Data Norusis . 1982 SPSS Introductory Guide Basic Statistics and Operations and 1985 SPSS-X Advanced Statistics Guide New York McGraw-Hill . Fano . 1961 Transmission of Information New York Wiley and MIT Press Chapter 2. LinearCorrelation g 2. o Z co cr q 2 o We next turn to measures of association between variables that are ordinal or continuous rather than nominal. Most widely used is the linear correlation coefficient. For pairs of quantities xi yfi i 1 . . N the linear correlation i coefficient r also called the product-moment correlation coefficient or PearsonS o 8 r is given by the formula S 3 3 3 P Xi - x yi - y r i . S JUxi -x 2 JE yi - v ssl V i V i d o where as usual X is the mean of the xi s y is the mean of the yi s. I The value of r lies between -1 and 1 inclusive. It takes on a value of 1 termed - S complete positive correlation when the data points lie on a perfect straight line with positive slope with x and y increasing together. The value 1 holds independent of the magnitude of the slope. If the data points lie on a perfect straight line with negative slope y decreasing as x increases then r has the value -1 this is called a 19 complete negative correlation. A value of r near zero indicates that the variables 1 x and y are uncorrelated. e P z When a correlation is known to be significant r is one conventional way of summarizing its strength. In fact the value of r can be translated into a statement about what residuals root mean square deviations are to be expected if the data are z 5 fitted to a straight line by the least-squares method see especially equations j - . Unfortunately r is a rather poor statistic for deciding whether 8 an observed correlation is statistically significant and or whether one observed 3 3 correlation is significantly stronger than another. The reason is that r is ignorant of t a the individual distributions of x and y so there is no .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.