TAILIEUCHUNG - Đánh giá sản phẩm mưa dự báo tổ hợp từ các mô hình dự báo mưa số trị toàn cầu: Ứng dụng cho lưu vực sông Kone

Sản phẩm mưa dự báo tổ hợp từ các mô hình số trị đã được sử dụng rộng rãi trong tác nghiệp dự báo lũ tại các trung tâm dự báo trên thế giới. Nghiên cứu này tập trung đánh giá chất lượng sản phẩm mưa dự báo tổ hợp thời đoạn 6h và thời gian dự báo lên tới 10 ngày của mô hình dự báo thời tiết số trị toàn cầu (NWP) với độ phân giải 0,5o x0,5o đền từ 4 trung tâm khác nhau gồm trung tâm dự báo thời tiết hạn vừa của châu âu (ECMWF), Cơ quan khí tượng Nhật bản (JMA), Cơ quan khí tượng Hàn Quốc (KMA), và Trung tâm quốc gia về dự báo môi trường (NCEP). Đánh giá được tiến hành cho lưu vực sông Kone trong thời gian mùa lũ các năm từ 2014 đến 2018 sử dụng các chỉ số đánh giá dự báo tất định và chỉ số đánh giá dự báo xác suất. Kết quả đánh giá cho thấy các sản phầm mưa tổ hợp này có tiềm năng cao để cung cấp các giá trị dự báo xác suất, đặc biệt với thời gian dự báo lên tới 48h. Trong bốn mô hình số trị xem xét ở trên, mô hình ECMWF đều nhất quán cho kết quả dự báo mưa tốt nhất và mô hình NCEP cho ra kỹ năng dự báo mưa kém nhất theo các chỉ tiêu kiểm định dự báo tất định và xác suất được xem xét trong bài báo. Những kết quả đánh giá trong bài báo có ý nghĩa quan trọng khi xem xét sử dụng sản phẩm mưa dự báo tổ hợp của các mô hình số trị để kéo dài thời gian dự báo dòng chảy hỗ trợ kiểm soát lũ và vận hành hồ chứa theo thời gian thực. | Đánh giá sản phẩm mưa dự báo tổ hợp từ các mô hình dự báo mưa số trị toàn cầu Ứng dụng cho lưu vực sông Kone KHOA HỌC CÔNG NGHỆ ĐÁNH GIÁ SẢN PHẨM MƯA DỰ BÁO TỔ HỢP TỪ CÁC MÔ HÌNH DỰ BÁO MƯA SỐ TRỊ TOÀN CẦU ỨNG DỤNG CHO LƯU VỰC SÔNG KONE Đỗ Anh Đức Viện Thủy điện và Năng lượng tái tạo Nguyễn Thị Thu Hà Ngô Lê An Trường Đại học Thuỷ lợi Tóm tắt Sản phẩm mưa dự báo tổ hợp từ các mô hình số trị đã được sử dụng rộng rãi trong tác nghiệp dự báo lũ tại các trung tâm dự báo trên thế giới. Nghiên cứu này tập trung đánh giá chất lượng sản phẩm mưa dự báo tổ hợp thời đoạn 6h và thời gian dự báo lên tới 10 ngày của mô hình dự báo thời tiết số trị toàn cầu NWP với độ phân giải 0 5ox0 5o đền từ 4 trung tâm khác nhau gồm trung tâm dự báo thời tiết hạn vừa của châu âu ECMWF Cơ quan khí tượng Nhật bản JMA Cơ quan khí tượng Hàn Quốc KMA và Trung tâm quốc gia về dự báo môi trường NCEP . Đánh giá được tiến hành cho lưu vực sông Kone trong thời gian mùa lũ các năm từ 2014 đến 2018 sử dụng các chỉ số đánh giá dự báo tất định và chỉ số đánh giá dự báo xác suất. Kết quả đánh giá cho thấy các sản phầm mưa tổ hợp này có tiềm năng cao để cung cấp các giá trị dự báo xác suất đặc biệt với thời gian dự báo lên tới 48h. Trong bốn mô hình số trị xem xét ở trên mô hình ECMWF đều nhất quán cho kết quả dự báo mưa tốt nhất và mô hình NCEP cho ra kỹ năng dự báo mưa kém nhất theo các chỉ tiêu kiểm định dự báo tất định và xác suất được xem xét trong bài báo. Những kết quả đánh giá trong bài báo có ý nghĩa quan trọng khi xem xét sử dụng sản phẩm mưa dự báo tổ hợp của các mô hình số trị để kéo dài thời gian dự báo dòng chảy hỗ trợ kiểm soát lũ và vận hành hồ chứa theo thời gian thực. Từ khoá mưa dự báo tổ hợp mô hình dự báo thời tiết số trị NWP lưu vực sông Kone Summary The use of rainfall forecasts derived from numerical weather prediction NWP models has recently become a common approach to improve the lead time of streamflow forecasts for flood control and real-time reservoir operation. .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.