TAILIEUCHUNG - Ứng dụng máy học vector hỗ trợ SVM trong dự đoán cơn động kinh

Bài viết đề xuất một phương pháp sử dụng máy học vector hỗ trợ SVM (Support Vector Machine) để dự đoán cơn động kinh dựa trên các bản ghi tín hiệu điện não đồ EEG (Electroencephalography). Phương pháp này sử dụng các đặc trưng đơn biến của tín hiệu EEG nhằm phân loại bốn trạng thái tín hiệu EEG (bình thường, tiền động kinh, động kinh và sau động kinh). | Ứng dụng máy học vector hỗ trợ SVM trong dự đoán cơn động kinh TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC (ISSN: 1859 - 4557) ỨNG DỤNG MÁY HỌC VECTOR HỖ TRỢ SVM TRONG DỰ ĐOÁN CƠN ĐỘNG KINH A METHOD BASED ON SVM TO PREDICT EPILEPTIC SEIZURES Nguyễn Văn Sơn1*, Vương Hoàng Nam2, Đào Xuân Phúc1, Vũ Duy Thuận3 1 Trường Đại học Mở Hà Nội, 2Trường Đại học Bách khoa Hà Nội, 3Trường Đại học Điện lực Ngày nhận bài: 11/10/2019, Ngày chấp nhận đăng: 25/12/2019, Phản biện: TS. Nguyễn Hữu Phát Tóm tắt: Bệnh động kinh được xem là căn bệnh liên quan đến rối loạn trong não phổ biến thứ hai và ảnh hưởng đến khoảng 1% dân số thế giới. Đặc trưng của động kinh là sự xuất hiện bất chợt và mất kiểm soát của cơn co giật (cơn động kinh). Trong bài báo này, chúng tôi đề xuất một phương pháp sử dụng máy học vector hỗ trợ SVM (Support Vector Machine) để dự đoán cơn động kinh dựa trên các bản ghi tín hiệu điện não đồ EEG (Electroencephalography). Phương pháp này sử dụng các đặc trưng đơn biến của tín hiệu EEG nhằm phân loại bốn trạng thái tín hiệu EEG (bình thường, tiền động kinh, động kinh và sau động kinh). Việc dự đoán chính xác cơn động kinh phụ thuộc vào khả năng nhận dạng/phân biệt trạng thái tiền động kinh (pre-ictal) với ba trạng thái còn lại. Các kết quả mô phỏng với cơ sở dữ liệu động kinh của Đại học Freiburg cho thấy tính hữu dụng của phương pháp đề xuất. Từ khóa: Máy học vector hỗ trợ (SVM), dự đoán cơn động kinh, tín hiệu điện não đồ (EEG). Abstract: Epilepsy is the second most common brain disorder and affects approximately 1% of the world’s population. Epilepsy is characterized by the occurrence of unforeseenable and uncontrollable seizures. In this paper, we propose a method based on SVM (Support Vector Machine) to predict epileptic seizures using EEG (Electroencephalography) recordings. In this method, univariate features are used to classify four states of EEG (inter-ictal, pre-ictal, ictal and

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.