TAILIEUCHUNG - Đề thi chọn HSG tỉnh lớp 9 THCS môn Toán năm 2013 - 2014 - Sở GD&ĐT Hải Dương

Nhằm giúp các em học sinh có thêm tài liệu ôn tập kiến thức, kĩ năng cơ bản, và biết cách vận dụng giải các bài tập một cách nhanh nhất và chính xác. Hãy tham khảo Đề thi chọn HSG tỉnh lớp 9 THCS môn Toán năm 2013 - 2014 - Sở GD&ĐT Hải Dương để tích lũy kinh nghiệm giải đề các em nhé! | SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 NĂM HỌC 2013-2014 MÔN THI: TOÁN Thời gian làm bài: 150 phút Ngày thi 20 tháng 03 năm 2014 (đề thi gồm 01 trang) ĐỀ THI CHÍNH THỨC Câu 1 (2 điểm). 1 1 x2 . a) Rút gọn biểu thức A (1 x)3 (1 x)3 2 1 x2 với 1 x 1. b) Cho a và b là các số thỏa mãn a > b > 0 và a3 a2b ab2 6b3 0 . Tính giá trị của biểu thức B a 4 4b4 . b4 4a 4 Câu 2 (2 điểm). a) Giải phương trình x2 ( x2 2) 4 x 2 x2 4. x 2x y b) Giải hệ phương trình 3 . y 2 y x Câu 3 (2 điểm). a) Tìm các số nguyên dương x, y thỏa mãn phương trình 2 xy 2xy x 32 y . b) Cho hai số tự nhiên a, b thỏa mãn 2a2 a 3b2 b . Chứng minh rằng 2a 2b 1 là số chính phương. 3 Câu 4 (3 điểm). Cho tam giác đều ABC nội tiếp đường tròn (O, R). H là một điểm di động trên đoạn OA (H khác A). Đường thẳng đi qua H và vuông góc với OA cắt cung nhỏ AB tại M. Gọi K là hình chiếu của M trên OB. a) Chứng minh HKM 2AMH. b) Các tiếp tuyến của (O, R) tại A và B cắt tiếp tuyến tại M của (O, R) lần lượt tại D và E. OD, OE cắt AB lần lượt tại F và G. Chứng minh = . c) Tìm giá trị lớn nhất của chu vi tam giác MAB theo R. Câu 5 (1 điểm). Cho a, b, c là các số thực dương thỏa mãn 2ab 6bc 2ac 7abc . Tìm 4ab 9ac 4bc giá trị nhỏ nhất của biểu thức C . a 2b a 4c b c ----------------------Hết------------------------ ĐÁP ÁN SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG --------------------------- HƯỚNG DẪN CHẤM ĐỀ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 NĂM HỌC 2013-2014 MÔN THI: TOÁN Ngày thi 20 tháng 03 năm 2014 (Hướng dẫn chấm gồm có 03 trang) Lưu ý: Nếu học sinh làm theo cách khác mà kết quả đúng thì giám khảo vẫn cho điểm tối đa. Câu Nội dung A Câu 1a: (1,0 đ) 1 1 x2 . 1 x 1 x 2 1 x2 2 1 x 1 1 x2 . 1 1 x2 2 1 x 1 x 1 x 1 x 2 1 1 x2 2 2 1 x 2 2x 2 = x 2 a3 a2b ab2 6b3

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.