TAILIEUCHUNG - Calculation of the pressure on the valves of a sluice

This paper is devoted to a nwnerical method for calculating the pressure on the vertical two-dimensional valve basing on Navier Stokes equaions. Numerical solutions at interior points are established by splitting Navie Stokes unsteady two-dimensional equations into two unsteady one-dimensional equations. | Journal of Mechanics, NCNST of Vietnam T. XIX, 1997, No 3 (25 - 34) CALCULATION OF THE PRESSURE ON THE VALVES OF A SLUICE TRAN GIA LICH - LE KIM LUAT- HAN QUOC TRINH Institute of Mathematics 1 Hanoi, Vietnam Abstract. This paper is devoted to a nwnerical method for calculating the pressure on the vertical two-dimensional valve basing on Navier-Stokes equa~ions. Numerical solutions at interior points are established by splitting Navie~-Stokes unsteady two-dimensional equations into two unsteady one-dimensional equations. An implicit scheme is obtained and the solution for these equations is established by the double sweep method. The values at the boundary points are calculated by the method of characteristics. This algorithm is applied to the concrete case presented at the end of this paper 1. Introduction It is very difficult to calculate the pressure fields, especially, in the case of solid boundary. Much attention has been paid to this problem. The aim of this paper is to present a numerical method for calculating the pressure on the vertical two~dimensional valve in hydraulic engineering. It is well known that the Navier-Stock equations for viscous incompressible fluid flows have the dimensional form as following: av at 1 - '\7. + (V · V')V = --V'P+ + F, - v P (} = 0, where V is velocity vector, P - pressure, F - external force, p - density, Let take p = 1. - kinematics viscosity. It is difficult to find directly numerical solutions of equations (). To avoid it, the artificial compression component is added to the continuity equation (see [1, 2]), and we obtain a modification for the Navier-Stokes equations as follows: av Bt + (V · V'}V = -V'P+ +F, a(P+ vz) ~--::,---'4'-'-. at (} + '\7 . v = 0. We suppose that either the channel has large enough width (in Oy-direction) or the velocity of fluid flow -changes slowly :in Oy~direction, then we can rewrite equations {} in the vertical two-dimensional equations of .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.